We consider the classic 1-center problem: Given a set P of n points in a metric space find the point in P that minimizes the maximum distance to the other points of P. We study the complexity of this problem in d-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length d. Our results for the 1-center problem may be classified based on d as follows. $\bullet$ Small d: We provide the first linear-time algorithm for 1-center problem in fixed-dimensional $\ell_1$ metrics. On the other hand, assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large d. When $d=\Omega(n)$, we extend our conditional lower bound to rule out sub quartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\epsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension d, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of n strings each of length n, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.
Signal-background classification is a central problem in High-Energy Physics, that plays a major role for the discovery of new fundamental particles. A recent method -- the Parametric Neural Network (pNN) -- leverages multiple signal mass hypotheses as an additional input feature to effectively replace a whole set of individual classifier, each providing (in principle) the best response for a single mass hypothesis. In this work we aim at deepening the understanding of pNNs in light of real-world usage. We discovered several peculiarities of parametric networks, providing intuition, metrics, and guidelines to them. We further propose an alternative parametrization scheme, resulting in a new parametrized neural network architecture: the AffinePNN; along with many other generally applicable improvements. Finally, we extensively evaluate our models on the HEPMASS dataset, along its imbalanced version (called HEPMASS-IMB) we provide here for the first time to further validate our approach. Provided results are in terms of the impact of the proposed design decisions, classification performance, and interpolation capability as well.
We consider optimization problems in which the goal is find a $k$-dimensional subspace of $\reals^n$, $k<<n$, which minimizes a convex and smooth loss. Such problemsgeneralize the fundamental task of principal component analysis (PCA) to include robust and sparse counterparts, and logistic PCA for binary data, among others. While this problem is not convex it admits natural algorithms with very efficient iterations and memory requirements, which is highly desired in high-dimensional regimes however, arguing about their fast convergence to a global optimal solution is difficult. On the other hand, there exists a simple convex relaxation for which convergence to the global optimum is straightforward, however corresponding algorithms are not efficient when the dimension is very large. In this work we present a natural deterministic sufficient condition so that the optimal solution to the convex relaxation is unique and is also the optimal solution to the original nonconvex problem. Mainly, we prove that under this condition, a natural highly-efficient nonconvex gradient method, which we refer to as \textit{gradient orthogonal iteration}, when initialized with a "warm-start", converges linearly for the nonconvex problem. We also establish similar results for the nonconvex projected gradient method, and the Frank-Wolfe method when applied to the convex relaxation. We conclude with empirical evidence on synthetic data which demonstrate the appeal of our approach.
We study ROUND-UFP and ROUND-SAP, two generalizations of the classical BIN PACKING problem that correspond to the unsplittable flow problem on a path (UFP) and the storage allocation problem (SAP), respectively. We are given a path with capacities on its edges and a set of tasks where for each task we are given a demand and a subpath. In ROUND-UFP, the goal is to find a packing of all tasks into a minimum number of copies (rounds) of the given path such that for each copy, the total demand of tasks on any edge does not exceed the capacity of the respective edge. In ROUND-SAP, the tasks are considered to be rectangles and the goal is to find a non-overlapping packing of these rectangles into a minimum number of rounds such that all rectangles lie completely below the capacity profile of the edges. We show that in contrast to BIN PACKING, both the problems do not admit an asymptotic polynomial-time approximation scheme (APTAS), even when all edge capacities are equal. However, for this setting, we obtain asymptotic $(2+\varepsilon)$-approximations for both problems. For the general case, we obtain an $O(\log\log n)$-approximation algorithm and an $O(\log\log\frac{1}{\delta})$-approximation under $(1+\delta)$-resource augmentation for both problems. For the intermediate setting of the no bottleneck assumption (i.e., the maximum task demand is at most the minimum edge capacity), we obtain absolute $12$- and asymptotic $(16+\varepsilon)$-approximation algorithms for ROUND-UFP and ROUND-SAP, respectively.
We study timed systems in which some timing features are unknown parameters. Parametric timed automata (PTAs) are a classical formalism for such systems but for which most interesting problems are undecidable. Notably, the parametric reachability emptiness problem, i.e., the emptiness of the parameter valuations set allowing to reach some given discrete state, is undecidable. Lower-bound/upper-bound parametric timed automata (L/U-PTAs) achieve decidability for reachability properties by enforcing a separation of parameters used as upper bounds in the automaton constraints, and those used as lower bounds. In this paper, we first study reachability. We exhibit a subclass of PTAs (namely integer-points PTAs) with bounded rational-valued parameters for which the parametric reachability emptiness problem is decidable. Using this class, we present further results improving the boundary between decidability and undecidability for PTAs and their subclasses such as L/U-PTAs. We then study liveness. We prove that: (1) deciding the existence of at least one parameter valuation for which there exists an infinite run in an L/U-PTA is PSpace-complete; (2) the existence of a parameter valuation such that the system has a deadlock is however undecidable; (3) the problem of the existence of a valuation for which a run remains in a given set of locations exhibits a very thin border between decidability and undecidability.
This paper presents encoding and decoding algorithms for several families of optimal rank metric codes whose codes are in restricted forms of symmetric, alternating and Hermitian matrices. First, we show the evaluation encoding is the right choice for these codes and then we provide easily reversible encoding methods for each family. Later unique decoding algorithms for the codes are described. The decoding algorithms are interpolation-based and can uniquely correct errors for each code with rank up to $\lfloor(d-1)/2\rfloor$ in polynomial-time, where $d$ is the minimum distance of the code.
Bisimulation metrics define a distance measure between states of a Markov decision process (MDP) based on a comparison of reward sequences. Due to this property they provide theoretical guarantees in value function approximation. In this work we first prove that bisimulation metrics can be defined via any $p$-Wasserstein metric for $p\geq 1$. Then we describe an approximate policy iteration (API) procedure that uses $\epsilon$-aggregation with $\pi$-bisimulation and prove performance bounds for continuous state spaces. We bound the difference between $\pi$-bisimulation metrics in terms of the change in the policies themselves. Based on these theoretical results, we design an API($\alpha$) procedure that employs conservative policy updates and enjoys better performance bounds than the naive API approach. In addition, we propose a novel trust region approach which circumvents the requirement to explicitly solve a constrained optimization problem. Finally, we provide experimental evidence of improved stability compared to non-conservative alternatives in simulated continuous control.
We consider the multi-armed bandit setting with a twist. Rather than having just one decision maker deciding which arm to pull in each round, we have $n$ different decision makers (agents). In the simple stochastic setting, we show that a "free-riding" agent observing another "self-reliant" agent can achieve just $O(1)$ regret, as opposed to the regret lower bound of $\Omega (\log t)$ when one decision maker is playing in isolation. This result holds whenever the self-reliant agent's strategy satisfies either one of two assumptions: (1) each arm is pulled at least $\gamma \ln t$ times in expectation for a constant $\gamma$ that we compute, or (2) the self-reliant agent achieves $o(t)$ realized regret with high probability. Both of these assumptions are satisfied by standard zero-regret algorithms. Under the second assumption, we further show that the free rider only needs to observe the number of times each arm is pulled by the self-reliant agent, and not the rewards realized. In the linear contextual setting, each arm has a distribution over parameter vectors, each agent has a context vector, and the reward realized when an agent pulls an arm is the inner product of that agent's context vector with a parameter vector sampled from the pulled arm's distribution. We show that the free rider can achieve $O(1)$ regret in this setting whenever the free rider's context is a small (in $L_2$-norm) linear combination of other agents' contexts and all other agents pull each arm $\Omega (\log t)$ times with high probability. Again, this condition on the self-reliant players is satisfied by standard zero-regret algorithms like UCB. We also prove a number of lower bounds.
The equivalence test is a main part in any classification problem. It helps to prove bounds for the main parameters of the considered combinatorial structures and to study their properties. In this paper, we present algorithms for equivalence of linear codes, based on their relation to multisets of points in a projective geometry.
"Program sensitivity" measures the distance between the outputs of a program when it is run on two related inputs. This notion, which plays an important role in areas such as data privacy and optimization, has been the focus of several program analysis techniques introduced in recent years. One approach that has proved particularly fruitful for this domain is the use of type systems inspired by linear logic, as pioneered by Reed and Pierce in the Fuzz programming language. In Fuzz, each type is equipped with its own notion of distance, and the typing rules explain how those distances can be treated soundly when analyzing the sensitivity of a program. In particular, Fuzz features two products types, corresponding to two different sensitivity analyses: the "tensor product" combines the distances of each component by adding them, while the "with product" takes their maximum. In this work, we show that products in Fuzz can be generalized to arbitrary $L^p$ distances, metrics that are often used in privacy and optimization. The original Fuzz products, tensor and with, correspond to the special cases $L^1$ and $L^\infty$. To simplify the handling of such products, we extend the Fuzz type system with bunches -- as in the logic of bunched implications -- where the distances of different groups of variables can be combined using different $L^p$ distances. We show that our extension can be used to reason about important examples of metrics between probability distributions in a natural way.
The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.