亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constrained tensor and matrix factorization models allow to extract interpretable patterns from multiway data. Therefore identifiability properties and efficient algorithms for constrained low-rank approximations are nowadays important research topics. This work deals with columns of factor matrices of a low-rank approximation being sparse in a known and possibly overcomplete basis, a model coined as Dictionary-based Low-Rank Approximation (DLRA). While earlier contributions focused on finding factor columns inside a dictionary of candidate columns, i.e. one-sparse approximations, this work is the first to tackle DLRA with sparsity larger than one. I propose to focus on the sparse-coding subproblem coined Mixed Sparse-Coding (MSC) that emerges when solving DLRA with an alternating optimization strategy. Several algorithms based on sparse-coding heuristics (greedy methods, convex relaxations) are provided to solve MSC. The performance of these heuristics is evaluated on simulated data. Then, I show how to adapt an efficient MSC solver based on the LASSO to compute Dictionary-based Matrix Factorization and Canonical Polyadic Decomposition in the context of hyperspectral image processing and chemometrics. These experiments suggest that DLRA extends the modeling capabilities of low-rank approximations, helps reducing estimation variance and enhances the identifiability and interpretability of estimated factors.

相關內容

This paper addresses the problem of determining all optimal integer solutions of a linear integer network flow problem, which we call the all optimal integer flow (AOF) problem. We derive an O(F (m + n) + mn + M ) time algorithm to determine all F many optimal integer flows in a directed network with n nodes and m arcs, where M is the best time needed to find one minimum cost flow. We remark that stopping Hamacher's well-known method for the determination of the K best integer flows at the first sub-optimal flow results in an algorithm with a running time of O(F m(n log n + m) + M ) for solving the AOF problem. Our improvement is essentially made possible by replacing the shortest path sub-problem with a more efficient way to determine a so called proper zero cost cycle using a modified depth-first search technique. As a byproduct, our analysis yields an enhanced algorithm to determine the K best integer flows that runs in O(Kn3 + M ). Besides, we give lower and upper bounds for the number of all optimal integer and feasible integer solutions. Our bounds are based on the fact that any optimal solution can be obtained by an initial optimal tree solution plus a conical combination of incidence vectors of all induced cycles with bounded coefficients.

Obtaining first-order regret bounds -- regret bounds scaling not as the worst-case but with some measure of the performance of the optimal policy on a given instance -- is a core question in sequential decision-making. While such bounds exist in many settings, they have proven elusive in reinforcement learning with large state spaces. In this work we address this gap, and show that it is possible to obtain regret scaling as $\mathcal{O}(\sqrt{V_1^\star K})$ in reinforcement learning with large state spaces, namely the linear MDP setting. Here $V_1^\star$ is the value of the optimal policy and $K$ is the number of episodes. We demonstrate that existing techniques based on least squares estimation are insufficient to obtain this result, and instead develop a novel robust self-normalized concentration bound based on the robust Catoni mean estimator, which may be of independent interest.

We propose new approximate alternating projection methods, based on randomized sketching, for the low-rank nonnegative matrix approximation problem: find a low-rank approximation of a nonnegative matrix that is nonnegative, but whose factors can be arbitrary. We calculate the computational complexities of the proposed methods and evaluate their performance in numerical experiments. The comparison with the known deterministic alternating projection methods shows that the randomized approaches are faster and exhibit similar convergence properties.

In this paper we propose a new optimization model for maximum likelihood estimation of causal and invertible ARMA models. Through a set of numerical experiments we show how our proposed model outperforms, both in terms of quality of the fitted model as well as in the computational time, the classical estimation procedure based on Jones reparametrization. We also propose a regularization term in the model and we show how this addition improves the out of sample quality of the fitted model. This improvement is achieved thanks to an increased penalty on models close to the non causality or non invertibility boundary.

Given a graph $G = (V,E)$, a threshold function $t~ :~ V \rightarrow \mathbb{N}$ and an integer $k$, we study the Harmless Set problem, where the goal is to find a subset of vertices $S \subseteq V$ of size at least $k$ such that every vertex $v\in V$ has less than $t(v)$ neighbors in $S$. We enhance our understanding of the problem from the viewpoint of parameterized complexity. Our focus lies on parameters that measure the structural properties of the input instance. We show that the problem is W[1]-hard parameterized by a wide range of fairly restrictive structural parameters such as the feedback vertex set number, pathwidth, treedepth, and even the size of a minimum vertex deletion set into graphs of pathwidth and treedepth at most three. On dense graphs, we show that the problem is W[1]-hard parameterized by cluster vertex deletion number. We also show that the Harmless Set problem with majority thresholds is W[1]-hard when parameterized by the treewidth of the input graph. We prove that the Harmless Set problem can be solved in polynomial time on graph with bounded cliquewidth. On the positive side, we obtain fixed-parameter algorithms for the problem with respect to neighbourhood diversity, twin cover and vertex integrity of the input graph. We show that the problem parameterized by the solution size is fixed parameter tractable on planar graphs. We thereby resolve two open questions stated in C. Bazgan and M. Chopin (2014) concerning the complexity of {\sc Harmless Set} parameterized by the treewidth of the input graph and on planar graphs with respect to the solution size.

Reference priors are theoretically attractive for the analysis of geostatistical data since they enable automatic Bayesian analysis and have desirable Bayesian and frequentist properties. But their use is hindered by computational hurdles that make their application in practice challenging. In this work, we derive a new class of default priors that approximate reference priors for the parameters of some Gaussian random fields. It is based on an approximation to the integrated likelihood of the covariance parameters derived from the spectral approximation of stationary random fields. This prior depends on the structure of the mean function and the spectral density of the model evaluated at a set of spectral points associated with an auxiliary regular grid. In addition to preserving the desirable Bayesian and frequentist properties, these approximate reference priors are more stable, and their computations are much less onerous than those of exact reference priors. Unlike exact reference priors, the marginal approximate reference prior of correlation parameter is always proper, regardless of the mean function or the smoothness of the correlation function. This property has important consequences for covariance model selection. An illustration comparing default Bayesian analyses is provided with a data set of lead pollution in Galicia, Spain.

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.

Data augmentation has been widely used for training deep learning systems for medical image segmentation and plays an important role in obtaining robust and transformation-invariant predictions. However, it has seldom been used at test time for segmentation and not been formulated in a consistent mathematical framework. In this paper, we first propose a theoretical formulation of test-time augmentation for deep learning in image recognition, where the prediction is obtained through estimating its expectation by Monte Carlo simulation with prior distributions of parameters in an image acquisition model that involves image transformations and noise. We then propose a novel uncertainty estimation method based on the formulated test-time augmentation. Experiments with segmentation of fetal brains and brain tumors from 2D and 3D Magnetic Resonance Images (MRI) showed that 1) our test-time augmentation outperforms a single-prediction baseline and dropout-based multiple predictions, and 2) it provides a better uncertainty estimation than calculating the model-based uncertainty alone and helps to reduce overconfident incorrect predictions.

Network embedding has attracted considerable research attention recently. However, the existing methods are incapable of handling billion-scale networks, because they are computationally expensive and, at the same time, difficult to be accelerated by distributed computing schemes. To address these problems, we propose RandNE, a novel and simple billion-scale network embedding method. Specifically, we propose a Gaussian random projection approach to map the network into a low-dimensional embedding space while preserving the high-order proximities between nodes. To reduce the time complexity, we design an iterative projection procedure to avoid the explicit calculation of the high-order proximities. Theoretical analysis shows that our method is extremely efficient, and friendly to distributed computing schemes without any communication cost in the calculation. We demonstrate the efficacy of RandNE over state-of-the-art methods in network reconstruction and link prediction tasks on multiple datasets with different scales, ranging from thousands to billions of nodes and edges.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司