We consider for the first time a stochastic generalized Nash equilibrium problem, i.e., with expected-value cost functions and joint feasibility constraints, under partial-decision information, meaning that the agents communicate only with some trusted neighbours. We propose several distributed algorithms for network games and aggregative games that we show being special instances of a preconditioned forward-backward splitting method. We prove that the algorithms converge to a generalized Nash equilibrium when the forward operator is restricted cocoercive by using the stochastic approximation scheme with variance reduction to estimate the expected value of the pseudogradient.
Most of existing studies on adaptive submodular optimization focus on the average-case, i.e., their objective is to find a policy that maximizes the expected utility over a known distribution of realizations. However, a policy that has a good average-case performance may have very poor performance under the worst-case realization. In this study, we propose to study two variants of adaptive submodular optimization problems, namely, worst-case adaptive submodular maximization and robust submodular maximization. The first problem aims to find a policy that maximizes the worst-case utility and the latter one aims to find a policy, if any, that achieves both near optimal average-case utility and worst-case utility simultaneously. We introduce a new class of stochastic functions, called \emph{worst-case submodular function}. For the worst-case adaptive submodular maximization problem subject to a $p$-system constraint, we develop an adaptive worst-case greedy policy that achieves a $\frac{1}{p+1}$ approximation ratio against the optimal worst-case utility if the utility function is worst-case submodular. For the robust adaptive submodular maximization problem subject to a cardinality constraint, if the utility function is both worst-case submodular and adaptive submodular, we develop a hybrid adaptive policy that achieves an approximation close to $1-e^{-\frac{1}{2}}$ under both worst case setting and average case setting simultaneously. We also describe several applications of our theoretical results, including pool-base active learning, stochastic submodular set cover and adaptive viral marketing.
We define cooperative games on general graphs and generalize Lloyd S. Shapley's celebrated allocation formula for those games in terms of stochastic path integral driven by the associated Markov chain on each graph. We then show that the value allocation operator, one for each player defined by the stochastic path integral, coincides with the player's component game which is the solution to the least squares (or Poisson's) equation, in light of the combinatorial Hodge decomposition on general weighted graphs. Several motivational examples and applications are also presented.
This paper proposes a distributed stochastic algorithm with variance reduction for general smooth non-convex finite-sum optimization, which has wide applications in signal processing and machine learning communities. In distributed setting, large number of samples are allocated to multiple agents in the network. Each agent computes local stochastic gradient and communicates with its neighbors to seek for the global optimum. In this paper, we develop a modified variance reduction technique to deal with the variance introduced by stochastic gradients. Combining gradient tracking and variance reduction techniques, this paper proposes a distributed stochastic algorithm, GT-VR, to solve large-scale non-convex finite-sum optimization over multi-agent networks. A complete and rigorous proof shows that the GT-VR algorithm converges to first-order stationary points with $O(\frac{1}{k})$ convergence rate. In addition, we provide the complexity analysis of the proposed algorithm. Compared with some existing first-order methods, the proposed algorithm has a lower $\mathcal{O}(PM\epsilon^{-1})$ gradient complexity under some mild condition. By comparing state-of-the-art algorithms and GT-VR in experimental simulations, we verify the efficiency of the proposed algorithm.
We study the max k-cut game on an undirected and unweighted graph in order to find out whether an optimal solution is also a strong equilibrium. While we do fail to show that, by proving an alternate formula for computing the cut value difference for a strong deviation, we show that optimal solutions are 7-stable equilibria. Furthermore, we prove some properties of minimal subsets with respect to a strong deviation, showing that each of their nodes will deviate towards the color of one of their neighbors and that those subsets induce connected subgraphs.
We study the generalization properties of the popular stochastic optimization method known as stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main contribution is providing upper bounds on the generalization error that depend on local statistics of the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our bounds depend on are the variance of the gradients (with respect to the data distribution) and the local smoothness of the objective function along the SGD path, and the sensitivity of the loss function to perturbations to the final output. Our key technical tool is combining the information-theoretic generalization bounds previously used for analyzing randomized variants of SGD with a perturbation analysis of the iterates.
We analyze Bitcoin mining from the perspective of a game and propose an optimal mining model that maximizes profits of pools and miners. The model is a two-stage Stackelberg game in which each stage forms a sub-game. In stage I, pools are the leaders who assign a computing power to be consumed by miners. In stage II, miners decide of their power consumption and distribution. They find themselves in a social dilemma in which they must choose between mining in solo, therefore prioritizing their individual preferences, and participating in a pool for the collective interest. The model relies on a pool protocol based on a simulated game in which the miners compete for the reward won by the pool. The solutions for the stage I sub-game and the simulated protocol game are unique and stable Nash equilibriums while the stage II sub-game leads to a stable cooperative equilibrium only when miners choose their strategies according to certain criteria. We conclude that the cooperative optimal mining model has the potential to favor Bitcoin decentralization and stability. Mainly, the social dilemma faced by miners together with the balance of incentives ensure a certain distribution of the network computing power between pools and solo miners, while equilibriums in the game solutions provide stability to the system.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan
Generative adversarial networks (GANs) evolved into one of the most successful unsupervised techniques for generating realistic images. Even though it has recently been shown that GAN training converges, GAN models often end up in local Nash equilibria that are associated with mode collapse or otherwise fail to model the target distribution. We introduce Coulomb GANs, which pose the GAN learning problem as a potential field of charged particles, where generated samples are attracted to training set samples but repel each other. The discriminator learns a potential field while the generator decreases the energy by moving its samples along the vector (force) field determined by the gradient of the potential field. Through decreasing the energy, the GAN model learns to generate samples according to the whole target distribution and does not only cover some of its modes. We prove that Coulomb GANs possess only one Nash equilibrium which is optimal in the sense that the model distribution equals the target distribution. We show the efficacy of Coulomb GANs on a variety of image datasets. On LSUN and celebA, Coulomb GANs set a new state of the art and produce a previously unseen variety of different samples.