亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a novel split learning (SL) framework, referred to as SplitMAC, which reduces the latency of SL by leveraging simultaneous uplink transmission over multiple access channels. The key strategy is to divide devices into multiple groups and allow the devices within the same group to simultaneously transmit their smashed data and device-side models over the multiple access channels. The optimization problem of device grouping to minimize SL latency is formulated, and the benefit of device grouping in reducing the uplink latency of SL is theoretically derived. By examining a two-device grouping case, two asymptotically-optimal algorithms are devised for device grouping in low and high signal-to-noise ratio (SNR) scenarios, respectively, while providing proofs of their optimality. By merging these algorithms, a near-optimal device grouping algorithm is proposed to cover a wide range of SNR. Our SL framework is also extended to consider practical fading channels and to support a general group size. Simulation results demonstrate that our SL framework with the proposed device grouping algorithm is superior to existing SL frameworks in reducing SL latency.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · Learning · MoDELS · 論文 · 數據點 ·
2024 年 5 月 1 日

Machine learning heavily relies on data, but real-world applications often encounter various data-related issues. These include data of poor quality, insufficient data points leading to under-fitting of machine learning models, and difficulties in data access due to concerns surrounding privacy, safety, and regulations. In light of these challenges, the concept of synthetic data generation emerges as a promising alternative that allows for data sharing and utilization in ways that real-world data cannot facilitate. This paper presents a comprehensive systematic review of existing studies that employ machine learning models for the purpose of generating synthetic data. The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains. Additionally, it explores different machine learning methods, with particular emphasis on neural network architectures and deep generative models. The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation. Furthermore, this study identifies the challenges and opportunities prevalent in this emerging field, shedding light on the potential avenues for future research. By delving into the intricacies of synthetic data generation, this paper aims to contribute to the advancement of knowledge and inspire further exploration in synthetic data generation.

This paper introduces CookingSense, a descriptive collection of knowledge assertions in the culinary domain extracted from various sources, including web data, scientific papers, and recipes, from which knowledge covering a broad range of aspects is acquired. CookingSense is constructed through a series of dictionary-based filtering and language model-based semantic filtering techniques, which results in a rich knowledgebase of multidisciplinary food-related assertions. Additionally, we present FoodBench, a novel benchmark to evaluate culinary decision support systems. From evaluations with FoodBench, we empirically prove that CookingSense improves the performance of retrieval augmented language models. We also validate the quality and variety of assertions in CookingSense through qualitative analysis.

As an essential tool of secure distributed machine learning, vertical federated learning (VFL) based on homomorphic encryption (HE) suffers from severe efficiency problems due to data inflation and time-consuming operations. To this core, we propose PackVFL, an efficient VFL framework based on packed HE (PackedHE), to accelerate the existing HE-based VFL algorithms. PackVFL packs multiple cleartexts into one ciphertext and supports single-instruction-multiple-data (SIMD)-style parallelism. We focus on designing a high-performant matrix multiplication (MatMult) method since it takes up most of the ciphertext computation time in HE-based VFL. Besides, devising the MatMult method is also challenging for PackedHE because a slight difference in the packing way could predominantly affect its computation and communication costs. Without domain-specific design, directly applying SOTA MatMult methods is hard to achieve optimal. Therefore, we make a three-fold design: 1) we systematically explore the current design space of MatMult and quantify the complexity of existing approaches to provide guidance; 2) we propose a hybrid MatMult method according to the unique characteristics of VFL; 3) we adaptively apply our hybrid method in representative VFL algorithms, leveraging distinctive algorithmic properties to further improve efficiency. As the batch size, feature dimension and model size of VFL scale up to large sizes, PackVFL consistently delivers enhanced performance. Empirically, PackVFL propels existing VFL algorithms to new heights, achieving up to a 51.52X end-to-end speedup. This represents a substantial 34.51X greater speedup compared to the direct application of SOTA MatMult methods.

This paper introduces EcoPull, a sustainable Internet of Things (IoT) framework empowered by tiny machine learning (TinyML) models for fetching images from wireless visual sensor networks. Two types of learnable TinyML models are installed in the IoT devices: i) a behavior model and ii) an image compressor model. The first filters out irrelevant images for the current task, reducing unnecessary transmission and resource competition among the devices. The second allows IoT devices to communicate with the receiver via latent representations of images, reducing communication bandwidth usage. However, integrating learnable modules into IoT devices comes at the cost of increased energy consumption due to inference. The numerical results show that the proposed framework can save > 70% energy compared to the baseline while maintaining the quality of the retrieved images at the ES.

This paper introduces a new stochastic optimization method based on the regularized Fisher information matrix (FIM), named SOFIM, which can efficiently utilize the FIM to approximate the Hessian matrix for finding Newton's gradient update in large-scale stochastic optimization of machine learning models. It can be viewed as a variant of natural gradient descent, where the challenge of storing and calculating the full FIM is addressed through making use of the regularized FIM and directly finding the gradient update direction via Sherman-Morrison matrix inversion. Additionally, like the popular Adam method, SOFIM uses the first moment of the gradient to address the issue of non-stationary objectives across mini-batches due to heterogeneous data. The utilization of the regularized FIM and Sherman-Morrison matrix inversion leads to the improved convergence rate with the same space and time complexities as stochastic gradient descent (SGD) with momentum. The extensive experiments on training deep learning models using several benchmark image classification datasets demonstrate that the proposed SOFIM outperforms SGD with momentum and several state-of-the-art Newton optimization methods in term of the convergence speed for achieving the pre-specified objectives of training and test losses as well as test accuracy.

Large Language Models (LLM) have become a popular approach for implementing Retrieval Augmented Generation (RAG) systems, and a significant amount of effort has been spent on building good models and metrics. In spite of increased recognition of the need for rigorous evaluation of RAG systems, few tools exist that go beyond the creation of model output and automatic calculation. We present InspectorRAGet, an introspection platform for RAG evaluation. InspectorRAGet allows the user to analyze aggregate and instance-level performance of RAG systems, using both human and algorithmic metrics as well as annotator quality. InspectorRAGet is suitable for multiple use cases and is available publicly to the community. The demo video is available at //youtu.be/MJhe8QIXcEc

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.

We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.

北京阿比特科技有限公司