亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we construct $4$-phase Golay complementary sequence (GCS) set of cardinality $2^{3+\lceil \log_2 r \rceil}$ with arbitrary sequence length $n$, where the $10^{13}$-base expansion of $n$ has $r$ nonzero digits. Specifically, the GCS octets (eight sequences) cover all the lengths no greater than $10^{13}$. Besides, based on the representation theory of signed symmetric group, we construct Hadamard matrices from some special GCS to improve their asymptotic existence: there exist Hadamard matrices of order $2^t m$ for any odd number $m$, where $t = 6\lfloor \frac{1}{40}\log_{2}m\rfloor + 10$.

相關內容

Inverse reinforcement learning (IRL) aims to infer an agent's preferences (represented as a reward function $R$) from their behaviour (represented as a policy $\pi$). To do this, we need a behavioural model of how $\pi$ relates to $R$. In the current literature, the most common behavioural models are optimality, Boltzmann-rationality, and causal entropy maximisation. However, the true relationship between a human's preferences and their behaviour is much more complex than any of these behavioural models. This means that the behavioural models are misspecified, which raises the concern that they may lead to systematic errors if applied to real data. In this paper, we analyse how sensitive the IRL problem is to misspecification of the behavioural model. Specifically, we provide necessary and sufficient conditions that completely characterise how the observed data may differ from the assumed behavioural model without incurring an error above a given threshold. In addition to this, we also characterise the conditions under which a behavioural model is robust to small perturbations of the observed policy, and we analyse how robust many behavioural models are to misspecification of their parameter values (such as e.g.\ the discount rate). Our analysis suggests that the IRL problem is highly sensitive to misspecification, in the sense that very mild misspecification can lead to very large errors in the inferred reward function.

The capability to generate simulation-ready garment models from 3D shapes of clothed humans will significantly enhance the interpretability of captured geometry of real garments, as well as their faithful reproduction in the virtual world. This will have notable impact on fields like shape capture in social VR, and virtual try-on in the fashion industry. To align with the garment modeling process standardized by the fashion industry as well as cloth simulation softwares, it is required to recover 2D patterns. This involves an inverse garment design problem, which is the focus of our work here: Starting with an arbitrary target garment geometry, our system estimates an animatable garment model by automatically adjusting its corresponding 2D template pattern, along with the material parameters of the physics-based simulation (PBS). Built upon a differentiable cloth simulator, the optimization process is directed towards minimizing the deviation of the simulated garment shape from the target geometry. Moreover, our produced patterns meet manufacturing requirements such as left-to-right-symmetry, making them suited for reverse garment fabrication. We validate our approach on examples of different garment types, and show that our method faithfully reproduces both the draped garment shape and the sewing pattern.

The Weisfeiler-Leman (WL) dimension of a graph parameter $f$ is the minimum $k$ such that, if $G_1$ and $G_2$ are indistinguishable by the $k$-dimensional WL-algorithm then $f(G_1)=f(G_2)$. The WL-dimension of $f$ is $\infty$ if no such $k$ exists. We study the WL-dimension of graph parameters characterised by the number of answers from a fixed conjunctive query to the graph. Given a conjunctive query $\varphi$, we quantify the WL-dimension of the function that maps every graph $G$ to the number of answers of $\varphi$ in $G$. The works of Dvor\'ak (J. Graph Theory 2010), Dell, Grohe, and Rattan (ICALP 2018), and Neuen (ArXiv 2023) have answered this question for full conjunctive queries, which are conjunctive queries without existentially quantified variables. For such queries $\varphi$, the WL-dimension is equal to the treewidth of the Gaifman graph of $\varphi$. In this work, we give a characterisation that applies to all conjunctive qureies. Given any conjunctive query $\varphi$, we prove that its WL-dimension is equal to the semantic extension width $\mathsf{sew}(\varphi)$, a novel width measure that can be thought of as a combination of the treewidth of $\varphi$ and its quantified star size, an invariant introduced by Durand and Mengel (ICDT 2013) describing how the existentially quantified variables of $\varphi$ are connected with the free variables. Using the recently established equivalence between the WL-algorithm and higher-order Graph Neural Networks (GNNs) due to Morris et al. (AAAI 2019), we obtain as a consequence that the function counting answers to a conjunctive query $\varphi$ cannot be computed by GNNs of order smaller than $\mathsf{sew}(\varphi)$.

The solutions of the equation f^{ (p--1) }+ f^p = h^p in the unknown function f overan algebraic function field of characteristic p are very closely linked to the structure and fac-torisations of linear differential operators with coefficients in function fields of characteristic p.However, while being able to solve this equation over general algebraic function fields is necessaryeven for operators with rational coefficients, no general resolution method has been developed.We present an algorithm for testing the existence of solutions in polynomial time in the ``size''of h and an algorithm based on the computation of Riemann-Roch spaces and the selection ofelements in the divisor class group, for computing solutions of size polynomial in the ``size'' of hin polynomial time in the size of h and linear in the characteristic p, and discuss its applicationsto the factorisation of linear differential operators in positive characteristic p.

A subset $S$ of vertices in a graph $G$ is a secure dominating set of $G$ if $S$ is a dominating set of $G$ and, for each vertex $u \not\in S$, there is a vertex $v \in S$ such that $uv$ is an edge and $(S \setminus \{v\}) \cup \{u\}$ is also a dominating set of $G$. The secure domination number of $G$, denoted by $\gamma_{s}(G)$, is the cardinality of a smallest secure dominating sets of $G$. In this paper, we prove that for any outerplanar graph with $n \geq 4$ vertices, $\gamma_{s}(G) \geq (n+4)/5$ and the bound is tight.

This paper studies the commonly utilized windowed Anderson acceleration (AA) algorithm for fixed-point methods, $x^{(k+1)}=q(x^{(k)})$. It provides the first proof that when the operator $q$ is linear and symmetric the windowed AA, which uses a sliding window of prior iterates, improves the root-linear convergence factor over the fixed-point iterations. When $q$ is nonlinear, yet has a symmetric Jacobian at a fixed point, a slightly modified AA algorithm is proved to have an analogous root-linear convergence factor improvement over fixed-point iterations. Simulations verify our observations. Furthermore, experiments with different data models demonstrate AA is significantly superior to the standard fixed-point methods for Tyler's M-estimation.

Let $\mathcal{P}$ be a simple polygon with $m$ vertices and let $P$ be a set of $n$ points inside $\mathcal{P}$. We prove that there exists, for any $\varepsilon>0$, a set $\mathcal{C} \subset P$ of size $O(1/\varepsilon^2)$ such that the following holds: for any query point $q$ inside the polygon $\mathcal{P}$, the geodesic distance from $q$ to its furthest neighbor in $\mathcal{C}$ is at least $1-\varepsilon$ times the geodesic distance to its further neighbor in $P$. Thus the set $\mathcal{C}$ can be used for answering $\varepsilon$-approximate furthest-neighbor queries with a data structure whose storage requirement is independent of the size of $P$. The coreset can be constructed in $O\left(\frac{1}{\varepsilon} \left( n\log(1/\varepsilon) + (n+m)\log(n+m)\right) \right)$ time.

Coded caching schemes are used to reduce computer network traffics in peak time. To determine the efficiency of the schemes, \cite{MN} defined the information rate of the schemes and gave a construction of optimal coded caching schemes. However, their construction needs to split the data into a large number of packets which may cause constraints in real applications. Many researchers then constructed new coded caching schemes to reduce the number of packets but that increased the information rate. We define an optimization of coded caching schemes under the limitation of the number of packets which may be used to verify the efficiency of these schemes. We also give some constructions for several infinite classes of optimal coded caching schemes under the new definition.

We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give error bounds that are tighter and more general than in previous work. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

北京阿比特科技有限公司