We study the problem of unsourced random access (URA) over Rayleigh block-fading channels with a receiver equipped with multiple antennas. We propose a slotted structure with multiple stages of orthogonal pilots, each of which is randomly picked from a codebook. In the proposed signaling structure, each user encodes its message using a polar code and appends it to the selected pilot sequences to construct its transmitted signal. Accordingly, the transmitted signal is composed of multiple orthogonal pilot parts and a polar-coded part, which is sent through a randomly selected slot. The performance of the proposed scheme is further improved by randomly dividing users into different groups each having a unique interleaver-power pair. We also apply the idea of multiple stages of orthogonal pilots to the case of a single receive antenna. In all the set-ups, we use an iterative approach for decoding the transmitted messages along with a suitable successive interference cancellation technique. The use of orthogonal pilots and the slotted structure lead to improved accuracy and reduced computational complexity in the proposed set-ups, and make the implementation with short blocklengths more viable. Performance of the proposed set-ups is illustrated via extensive simulation results which show that the proposed set-ups with multiple antennas perform better than the existing MIMO URA solutions for both short and large blocklengths, and that the proposed single-antenna set-ups are superior to the existing single-antenna URA schemes.
We study stochastic Cubic Newton methods for solving general possibly non-convex minimization problems. We propose a new framework, which we call the helper framework, that provides a unified view of the stochastic and variance-reduced second-order algorithms equipped with global complexity guarantees. It can also be applied to learning with auxiliary information. Our helper framework offers the algorithm designer high flexibility for constructing and analyzing the stochastic Cubic Newton methods, allowing arbitrary size batches, and the use of noisy and possibly biased estimates of the gradients and Hessians, incorporating both the variance reduction and the lazy Hessian updates. We recover the best-known complexities for the stochastic and variance-reduced Cubic Newton, under weak assumptions on the noise. A direct consequence of our theory is the new lazy stochastic second-order method, which significantly improves the arithmetic complexity for large dimension problems. We also establish complexity bounds for the classes of gradient-dominated objectives, that include convex and strongly convex problems. For Auxiliary Learning, we show that using a helper (auxiliary function) can outperform training alone if a given similarity measure is small.
In backscatter communication (BC), a passive tag transmits information by just affecting an external electromagnetic field through load modulation. Thereby, the feed current of the excited tag antenna is modulated by adapting the passive termination load. This paper studies the achievable information rates with a freely adaptable passive load. As a prerequisite, we unify monostatic, bistatic, and ambient BC with circuit-based system modeling. We present the crucial insight that channel capacity is described by existing results on peak-power-limited quadrature Gaussian channels, because the steady-state tag current phasor lies on a disk. Consequently, we derive the channel capacity for the case of an unmodulated external field, for general passive, purely reactive, or purely resistive tag loads. We find that modulating both resistance and reactance is important for very high rates. We discuss the capacity-achieving load statistics, rate asymptotics, technical conclusions, and rate losses from value-range-constrained loads (which are found to be small for moderate constraints). We then demonstrate that near-capacity rates can be attained by more practical schemes: (i) amplitude-and-phase-shift keying on the reflection coefficient and (ii) simple load circuits of a few switched resistors and capacitors. Finally, we draw conclusions for the ambient BC channel capacity in important special cases.
Humans possess the cognitive ability to comprehend scenes in a compositional manner. To empower AI systems with similar capabilities, object-centric learning aims to acquire representations of individual objects from visual scenes without any supervision. Although recent advances in object-centric learning have made remarkable progress on complex synthesis datasets, there is a huge challenge for application to complex real-world scenes. One of the essential reasons is the scarcity of real-world datasets specifically tailored to object-centric learning. To address this problem, we propose a versatile real-world dataset of tabletop scenes for object-centric learning called OCTScenes, which is meticulously designed to serve as a benchmark for comparing, evaluating, and analyzing object-centric learning methods. OCTScenes contains 5000 tabletop scenes with a total of 15 objects. Each scene is captured in 60 frames covering a 360-degree perspective. Consequently, OCTScenes is a versatile benchmark dataset that can simultaneously satisfy the evaluation of object-centric learning methods based on single-image, video, and multi-view. Extensive experiments of representative object-centric learning methods are conducted on OCTScenes. The results demonstrate the shortcomings of state-of-the-art methods for learning meaningful representations from real-world data, despite their impressive performance on complex synthesis datasets. Furthermore, OCTScenes can serve as a catalyst for the advancement of existing methods, inspiring them to adapt to real-world scenes. Dataset and code are available at //huggingface.co/datasets/Yinxuan/OCTScenes.
Neural implicit representation is a promising approach for reconstructing surfaces from point clouds. Existing methods combine various regularization terms, such as the Eikonal and Laplacian energy terms, to enforce the learned neural function to possess the properties of a Signed Distance Function (SDF). However, inferring the actual topology and geometry of the underlying surface from poor-quality unoriented point clouds remains challenging. In accordance with Differential Geometry, the Hessian of the SDF is singular for points within the differential thin-shell space surrounding the surface. Our approach enforces the Hessian of the neural implicit function to have a zero determinant for points near the surface. This technique aligns the gradients for a near-surface point and its on-surface projection point, producing a rough but faithful shape within just a few iterations. By annealing the weight of the singular-Hessian term, our approach ultimately produces a high-fidelity reconstruction result. Extensive experimental results demonstrate that our approach effectively suppresses ghost geometry and recovers details from unoriented point clouds with better expressiveness than existing fitting-based methods.
This study looked into how effective a Musical Brain-Computer Interface (MBCI) can be in providing feedback about synchrony between two people. Using a double EEG setup, we compared two types of musical feedback; one that adapted in real-time based on the inter-brain synchrony between participants (Neuroadaptive condition), and another music that was randomly generated (Random condition). We evaluated how these two conditions were perceived by 8 dyads (n = 16) and whether the generated music could influence the perceived connection and EEG synchrony between them. The findings indicated that Neuroadaptive musical feedback could potentially boost synchrony levels between people compared to Random feedback, as seen by a significant increase in EEG phase-locking values. Additionally, the real-time measurement of synchrony was successfully validated and musical neurofeedback was generally well-received by the participants. However, more research is needed for conclusive results due to the small sample size. This study is a stepping stone towards creating music that can audibly reflect the level of synchrony between individuals.
Denial-of-Service (DoS) threats pose a major challenge to the idea of physical-layer key generation as the underlying wireless channels for key extraction are usually public. Identifying this vulnerability, we study the effect of DoS threats on relay-assisted key generation, and show that a reactive jamming attack on the distribution phase of relay-assisted key generation can forbid the nodes from extracting secret keys. To circumvent this problem, we propose a self-sustainable key generation model, wherein a frequency-hopping based distribution phase is employed to evade the jamming attack even though the participating nodes do not share prior credentials. A salient feature of the idea is to carve out a few bits from the key generation phase and subsequently use them to pick a frequency band at random for the broadcast phase. Interesting resource-allocation problems are formulated on how to extract maximum number of secret bits while also being able to evade the jamming attack with high probability. Tractable low-complexity solutions are also provided to the resource-allocation problems, along with insights on the feasibility of their implementation in practice.
Automation of High-Level Context (HLC) reasoning for intelligent systems at scale is imperative due to the unceasing accumulation of contextual data in the IoT era, the trend of the fusion of data from multi-sources, and the intrinsic complexity and dynamism of the context-based decision-making process. To mitigate this issue, we propose an automatic context reasoning framework CSM-H-R, which programmatically combines ontologies and states at runtime and the model-storage phase for attaining the ability to recognize meaningful HLC, and the resulting data representation can be applied to different reasoning techniques. Case studies are developed based on an intelligent elevator system in a smart campus setting. An implementation of the framework - a CSM Engine, and the experiments of translating the HLC reasoning into vector and matrix computing especially take care of the dynamic aspects of context and present the potentiality of using advanced mathematical and probabilistic models to achieve the next level of automation in integrating intelligent systems; meanwhile, privacy protection support is achieved by anonymization through label embedding and reducing information correlation. The code of this study is available at: //github.com/songhui01/CSM-H-R.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By relying on expensive sampling techniques or computationally heavy pre/post-processing steps, most existing approaches are only able to be trained and operate over small-scale point clouds. In this paper, we introduce RandLA-Net, an efficient and lightweight neural architecture to directly infer per-point semantics for large-scale point clouds. The key to our approach is to use random point sampling instead of more complex point selection approaches. Although remarkably computation and memory efficient, random sampling can discard key features by chance. To overcome this, we introduce a novel local feature aggregation module to progressively increase the receptive field for each 3D point, thereby effectively preserving geometric details. Extensive experiments show that our RandLA-Net can process 1 million points in a single pass with up to 200X faster than existing approaches. Moreover, our RandLA-Net clearly surpasses state-of-the-art approaches for semantic segmentation on two large-scale benchmarks Semantic3D and SemanticKITTI.