亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantization (Alistarh et al., 2017) is an important (stochastic) compression technique that reduces the volume of transmitted bits during each communication round in distributed model training. Suresh et al. (2022) introduce correlated quantizers and show their advantages over independent counterparts by analyzing distributed SGD communication complexity. We analyze the forefront distributed non-convex optimization algorithm MARINA (Gorbunov et al., 2022) utilizing the proposed correlated quantizers and show that it outperforms the original MARINA and distributed SGD of Suresh et al. (2022) with regard to the communication complexity. We significantly refine the original analysis of MARINA without any additional assumptions using the weighted Hessian variance (Tyurin et al., 2022), and then we expand the theoretical framework of MARINA to accommodate a substantially broader range of potentially correlated and biased compressors, thus dilating the applicability of the method beyond the conventional independent unbiased compressor setup. Extensive experimental results corroborate our theoretical findings.

相關內容

In the physical sciences, there is an increased need for robust feature representations of image data: image acquisition, in the generalized sense of two-dimensional data, is now widespread across a large number of fields, including quantum information science, which we consider here. While traditional image features are widely utilized in such cases, their use is rapidly being supplanted by Neural Network-based techniques that often sacrifice explainability in exchange for high accuracy. To ameliorate this trade-off, we propose a synthetic data-based technique that results in explainable features. We show, using Explainable Boosting Machines (EBMs), that this method offers superior explainability without sacrificing accuracy. Specifically, we show that there is a meaningful benefit to this technique in the context of quantum dot tuning, where human intervention is necessary at the current stage of development.

Ptychography is a computational imaging technique that aims to reconstruct the object of interest from a set of diffraction patterns. Each of these is obtained by a localized illumination of the object, which is shifted after each illumination to cover its whole domain. As in the resulting measurements the phase information is lost, ptychography gives rise to solving a phase retrieval problem. In this work, we consider ptychographic measurements corrupted with background noise, a type of additive noise that is independent of the shift, i.e., it is the same for all diffraction patterns. Two algorithms are provided, for arbitrary objects and for so-called phase objects that do not absorb the light but only scatter it. For the second type, a uniqueness of reconstruction is established for almost every object. Our approach is based on the Wigner Distribution Deconvolution, which lifts the object to a higher-dimensional matrix space where the recovery can be reformulated as a linear problem. Background noise only affects a few equations of the linear system that are therefore discarded. The lost information is then restored using redundancy in the higher-dimensional space. Keywords: phase retrieval, ptychography, background noise, Wigner Distribution Deconvolution, uniqueness of reconstruction.

We propose a noble, comprehensive and robust agile requirements change management (ARCM) model that addresses the limitations of existing models and is tailored for agile software development in the global software development paradigm. To achieve this goal, we conducted an exhaustive literature review and an empirical study with RCM industry experts. Our study evaluated the effectiveness of the proposed RCM model in a real-world setting and identifies any limitations or areas for improvement. The results of our study provide valuable insights into how the proposed RCM model can be applied in agile global software development environments to improve software development practices and optimize project success rates.

Cooperative perception is a promising technique for intelligent and connected vehicles through vehicle-to-everything (V2X) cooperation, provided that accurate pose information and relative pose transforms are available. Nevertheless, obtaining precise positioning information often entails high costs associated with navigation systems. {Hence, it is required to calibrate relative pose information for multi-agent cooperative perception.} This paper proposes a simple but effective object association approach named context-based matching (CBM), which identifies inter-agent object correspondences using intra-agent geometrical context. In detail, this method constructs contexts using the relative position of the detected bounding boxes, followed by local context matching and global consensus maximization. The optimal relative pose transform is estimated based on the matched correspondences, followed by cooperative perception fusion. Extensive experiments are conducted on both the simulated and real-world datasets. Even with larger inter-agent localization errors, high object association precision and decimeter-level relative pose calibration accuracy are achieved among the cooperating agents.

Artificial intelligence workloads, especially transformer models, exhibit emergent sparsity in which computations perform selective sparse access to dense data. The workloads are inefficient on hardware designed for dense computations and do not map well onto sparse data representations. We build a vectorized and parallel matrix-multiplication system A X B = C that eliminates unnecessary computations and avoids branches based on a runtime evaluation of sparsity. We use a combination of dynamic code lookup to adapt to the specific sparsity encoded in the B matrix and preprocessing of sparsity maps of the A and B matrices to compute conditional branches once for the whole computation. For a wide range of sparsity, from 60% to 95% zeros, our implementation performs fewer instructions and increases performance when compared with Intel MKL's dense or sparse matrix multiply routines. Benefits can be as large as 2 times speedup and 4 times fewer instructions.

The success of artificial intelligence (AI), and deep learning models in particular, has led to their widespread adoption across various industries due to their ability to process huge amounts of data and learn complex patterns. However, due to their lack of explainability, there are significant concerns regarding their use in critical sectors, such as finance and healthcare, where decision-making transparency is of paramount importance. In this paper, we provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance. We categorize the collection of explainable AI methods according to their corresponding characteristics, and we review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司