亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a new method for constructing $1$-perfect mixed codes in the Cartesian product $\mathbb{F}_{n} \times \mathbb{F}_{q}^n$, where $\mathbb{F}_{n}$ and $\mathbb{F}_{q}$ are finite fields of orders $n = q^m$ and $q$. We consider generalized Reed-Muller codes of length $n = q^m$ and order $(q - 1)m - 2$. Codes whose parameters are the same as the parameters of generalized Reed-Muller codes are called Reed-Muller-like codes. The construction we propose is based on partitions of distance-2 MDS codes into Reed-Muller-like codes of order $(q - 1)m - 2$. We construct a set of $q^{q^{cn}}$ nonequivalent 1-perfect mixed codes in the Cartesian product $\mathbb{F}_{n} \times \mathbb{F}_{q}^{n}$, where the constant $c$ satisfies $c < 1$, $n = q^m$ and $m$ is a sufficiently large positive integer. We also prove that each $1$-perfect mixed code in the Cartesian product $\mathbb{F}_{n} \times \mathbb{F}_{q}^n$ corresponds to a certain partition of a distance-2 MDS code into Reed-Muller-like codes of order $(q - 1)m - 2$.

相關內容

A set $C$ of vertices in a graph $G=(V,E)$ is an identifying code if it is dominating and any two vertices of $V$ are dominated by distinct sets of codewords. This paper presents a survey of Iiro Honkala's contributions to the study of identifying codes with respect to several aspects: complexity of computing an identifying code, combinatorics in binary Hamming spaces, infinite grids, relationships between identifying codes and usual parameters in graphs, structural properties of graphs admitting identifying codes, and number of optimal identifying codes.

We introduce a text-to-speech (TTS) model called BASE TTS, which stands for $\textbf{B}$ig $\textbf{A}$daptive $\textbf{S}$treamable TTS with $\textbf{E}$mergent abilities. BASE TTS is the largest TTS model to-date, trained on 100K hours of public domain speech data, achieving a new state-of-the-art in speech naturalness. It deploys a 1-billion-parameter autoregressive Transformer that converts raw texts into discrete codes ("speechcodes") followed by a convolution-based decoder which converts these speechcodes into waveforms in an incremental, streamable manner. Further, our speechcodes are built using a novel speech tokenization technique that features speaker ID disentanglement and compression with byte-pair encoding. Echoing the widely-reported "emergent abilities" of large language models when trained on increasing volume of data, we show that BASE TTS variants built with 10K+ hours and 500M+ parameters begin to demonstrate natural prosody on textually complex sentences. We design and share a specialized dataset to measure these emergent abilities for text-to-speech. We showcase state-of-the-art naturalness of BASE TTS by evaluating against baselines that include publicly available large-scale text-to-speech systems: YourTTS, Bark and TortoiseTTS. Audio samples generated by the model can be heard at //amazon-ltts-paper.com/.

Working in Zermelo-Fraenkel Set Theory with Atoms over an $\omega$-categorical $\omega$-stable structure, we show how \emph{infinite} constructions over definable sets can be encoded as \emph{finite} constructions over the Stone-\v{C}ech compactification of the sets. In particular, we show that for a definable set $X$ with its Stone-\v{C}ech compactification $\overline{X}$ the following holds: a) the powerset $\mathcal{P}(X)$ of $X$ is isomorphic to the finite-powerset $\mathcal{P}_{\textit{fin}}(\overline{X})$ of $\overline{X}$, b) the vector space $\mathcal{K}^X$ over a field $\mathcal{K}$ is the free vector space $F_{\mathcal{K}}(\overline{X})$ on $\overline{X}$ over $\mathcal{K}$, c) every measure on $X$ is tantamount to a \emph{discrete} measure on $\overline{X}$. Moreover, we prove that the Stone-\v{C}ech compactification of a definable set is still definable, which allows us to obtain some results about equivalence of certain formalizations of register machines.

At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay for a weaker notion of degeneracy, or even parameterized by the maximum degree $\Delta$, i.e., whether it can be turned into an algorithm with delay $f(\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, and as a first step toward answering that question, they note that they could not achieve these time bounds even for the particular case of minimal dominating sets enumeration. In this paper, using ordered generation, we show that an FPT-delay algorithm can be devised for minimal transversals enumeration parameterized by the maximum degree and dimension, giving a positive and more general answer to the latter question.

We propose and study a new multilevel method for the numerical approximation of a Gibbs distribution $\pi$ on $\mathbb{R}^d$, based on (overdamped) Langevin diffusions. This method inspired by \cite{mainPPlangevin} and \cite{giles_szpruch_invariant} relies on a multilevel occupation measure, $i.e.$ on an appropriate combination of $R$ occupation measures of (constant-step) Euler schemes with respective steps $\gamma_r = \gamma_0 2^{-r}$, $r=0,\ldots,R$. We first state a quantitative result under general assumptions which guarantees an \textit{$\varepsilon$-approximation} (in a $L^2$-sense) with a cost of the order $\varepsilon^{-2}$ or $\varepsilon^{-2}|\log \varepsilon|^3$ under less contractive assumptions. We then apply it to overdamped Langevin diffusions with strongly convex potential $U:\mathbb{R}^d\rightarrow\mathbb{R}$ and obtain an \textit{$\varepsilon$-complexity} of the order ${\cal O}(d\varepsilon^{-2}\log^3(d\varepsilon^{-2}))$ or ${\cal O}(d\varepsilon^{-2})$ under additional assumptions on $U$. More precisely, up to universal constants, an appropriate choice of the parameters leads to a cost controlled by ${(\bar{\lambda}_U\vee 1)^2}{\underline{\lambda}_U^{-3}} d\varepsilon^{-2}$ (where $\bar{\lambda}_U$ and $\underline{\lambda}_U$ respectively denote the supremum and the infimum of the largest and lowest eigenvalue of $D^2U$). We finally complete these theoretical results with some numerical illustrations including comparisons to other algorithms in Bayesian learning and opening to non strongly convex setting.

This paper introduces a collection of scaling methods for generating $2N$-point DCT-II approximations based on $N$-point low-complexity transformations. Such scaling is based on the Hou recursive matrix factorization of the exact $2N$-point DCT-II matrix. Encompassing the widely employed Jridi-Alfalou-Meher scaling method, the proposed techniques are shown to produce DCT-II approximations that outperform the transforms resulting from the JAM scaling method according to total error energy and mean squared error. Orthogonality conditions are derived and an extensive error analysis based on statistical simulation demonstrates the good performance of the introduced scaling methods. A hardware implementation is also provided demonstrating the competitiveness of the proposed methods when compared to the JAM scaling method.

We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.

In this contribution, we consider a zero-dimensional polynomial system in $n$ variables defined over a field $\mathbb{K}$. In the context of computing a Rational Univariate Representation (RUR) of its solutions, we address the problem of certifying a separating linear form and, once certified, calculating the RUR that comes from it, without any condition on the ideal else than being zero-dimensional. Our key result is that the RUR can be read (closed formula) from lexicographic Groebner bases of bivariate elimination ideals, even in the case where the original ideal that is not in shape position, so that one can use the same core as the well known FGLM method to propose a simple algorithm. Our first experiments, either with a very short code (300 lines) written in Maple or with a Julia code using straightforward implementations performing only classical Gaussian reductions in addition to Groebner bases for the degree reverse lexicographic ordering, show that this new method is already competitive with sophisticated state of the art implementations which do not certify the parameterizations.

The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, $\chi_{o}(G)$, of $G$ is the least $k$ such that $G$ has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We say that a graph class $\mathcal{G}$ is $\chi_{pcf}$-bounded ($\chi_{o}$-bounded) if there is a function $f$ such that $\chi_{pcf}(G) \leq f(\chi(G))$ ($\chi_{o}(G) \leq f(\chi(G))$) for every $G \in \mathcal{G}$. Caro et al. (2022) asked for classes that are linearly $\chi_{pcf}$-bounded ($\chi_{pcf}$-bounded), and as a starting point, they showed that every claw-free graph $G$ satisfies $\chi_{pcf}(G) \le 2\Delta(G)+1$, which implies $\chi_{pcf}(G) \le 4\chi(G)+1$. In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph $G$ satisfies $\chi_{pcf}(G) \le \Delta(G)+6$, and even $\chi_{pcf}(G) \le \Delta(G)+4$ if it is a quasi-line graph. These results also give evidence for a conjecture by Caro et al. Moreover, we show that convex-round graphs and permutation graphs are linearly $\chi_{pcf}$-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly $\chi_{pcf}$-bounded to deciding if the bipartite graphs in the class are $\chi_{pcf}$-bounded by an absolute constant. This lemma complements a theorem of Liu (2022) and motivates us to study boundedness in bipartite graphs. In particular, we show that biconvex bipartite graphs are $\chi_{pcf}$-bounded while convex bipartite graphs are not even $\chi_o$-bounded, and exhibit a class of bipartite circle graphs that is linearly $\chi_o$-bounded but not $\chi_{pcf}$-bounded.

An important aim of this paper is to convey some basics of mathematical logic to the legal community working with Artificial Intelligence. After analysing what AI is, we decide to delimit ourselves to rule-based AI leaving Neural Networks and Machine Learning aside. Rule based AI allows for Formal methods which are described in a rudimentary form. We will then see how mathematical logic interacts with legal rule-based AI practice. We shall see how mathematical logic imposes limitations and complications to AI applications. We classify the limitations and interactions between mathematical logic and legal AI in three categories: logical, computational and mathematical. The examples to showcase the interactions will largely come from European traffic regulations. The paper closes off with some reflections on how and where AI could be used and on basic mechanisms that shape society.

北京阿比特科技有限公司