In this paper, we study the transmission design for reconfigurable intelligent surface (RIS)-aided multiuser communication networks. Different from most of the existing contributions, we consider long-term CSI-based transmission design, where both the beamforming vectors at the base station (BS) and the phase shifts at the RIS are designed based on long-term CSI, which can significantly reduce the channel estimation overhead. Due to the lack of explicit ergodic data rate expression, we propose a novel deep deterministic policy gradient (DDPG) based algorithm to solve the optimization problem, which was trained by using the channel vectors generated in an offline manner. Simulation results demonstrate that the achievable net throughput is higher than that achieved by the conventional instantaneous-CSI based scheme when taking the channel estimation overhead into account.
We study the performance of a phase-noise impaired double reconfigurable intelligent surface (RIS)-aided multiuser (MU) multiple-input single-output (MISO) system under spatial correlation at both RISs and base-station (BS). The downlink achievable rate is derived in closed-form under maximum ratio transmission (MRT) precoding. In addition, we obtain the optimal phase-shift design at both RISs in closed-form for the considered channel and phase-noise models. Numerical results validate the analytical expressions, and highlight the effects of different system parameters on the achievable rate. In particular, it is demonstrated that while phase-noise at RISs and spatial correlation at BS are capacity limiting factors, the spatial correlation at both RISs is essential to obtain high achievable rates.
The strong interference suffered by users can be a severe problem in cache-enabled networks (CENs) due to the content-centric user association mechanism. To tackle this issue, multi-antenna technology may be employed for interference management. In this paper, we consider a user-centric interference nulling (IN) scheme in two-tier multi-user multi-antenna CEN, with a hybrid most-popular and random caching policy at macro base stations (MBSs) and small base stations (SBSs) to provide file diversity. All the interfering SBSs within the IN range of a user are requested to suppress the interference at this user using zero-forcing beamforming. Using stochastic geometry analysis techniques, we derive a tractable expression for the area spectral efficiency (ASE). A lower bound on the ASE is also obtained, with which we then consider ASE maximization, by optimizing the caching policy and IN coefficient. To solve the resultant mixed integer programming problem, we design an alternating optimization algorithm to minimize the lower bound of the ASE. Our numerical results demonstrate that the proposed caching policy yields performance that is close to the optimum, and it outperforms several existing baselines.
Multi-access edge computing (MEC) is a key enabler to reduce the latency of vehicular network. Due to the vehicles mobility, their requested services (e.g., infotainment services) should frequently be migrated across different MEC servers to guarantee their stringent quality of service requirements. In this paper, we study the problem of service migration in a MEC-enabled vehicular network in order to minimize the total service latency and migration cost. This problem is formulated as a nonlinear integer program and is linearized to help obtaining the optimal solution using off-the-shelf solvers. Then, to obtain an efficient solution, it is modeled as a multi-agent Markov decision process and solved by leveraging deep Q learning (DQL) algorithm. The proposed DQL scheme performs a proactive services migration while ensuring their continuity under high mobility constraints. Finally, simulations results show that the proposed DQL scheme achieves close-to-optimal performance.
We consider the cache-aided multiple-input single-output (MISO) broadcast channel, which consists of a server with $L$ antennas and $K$ single-antenna users, where the server contains $N$ files of equal length and each user is equipped with a local cache of size $M$ files. Each user requests an arbitrary file from library. The objective is to design a coded caching scheme based on uncoded placement and one-shot linear delivery phases, to achieve the maximum worst-case sum Degree-of-Freedom (sum-DoF) with low subpacketization. Previously proposed schemes for this setting incurred either an exponential subpacketization order in $K$, or required specific conditions in the system parameters $L$, $K$, $M$ and $N$. In this paper, we propose a new combinatorial structure called multiple-antenna placement delivery array (MAPDA). Based on MAPDA and Latin square, the first proposed scheme achieves the sum-DoF $L+\frac{KM}{N}$ with the subpacketization of $K$ when $\frac{KM}{N}+L=K$. Subsequently, for the general case we propose a transformation approach to construct an MAPDA from any $g$-regular PDA (a class of PDA where each integer in the array occurs $g$ times) for the original shared-link coded caching problem. If the original PDA is the seminal coded caching scheme proposed by Maddah-Ali and Niesen, the resulting scheme can achieve the sum-DoF $L+\frac{KM}{N}$ with reduced subpacketization than the existing schemes.The work can be extended to the multiple independent single-antenna transmitters (servers) corresponding to the cache-aided interference channel proposed by Naderializadeh et al. and the scenario of transmitters equipped with multiple antennas.
In future sixth-generation (6G) mobile networks, the Internet-of-Everything (IoE) is expected to provide extremely massive connectivity for small battery-powered devices. Indeed, massive devices with limited energy storage capacity impose persistent energy demand hindering the lifetime of communication networks. As a remedy, wireless energy transfer (WET) is a key technology to address these critical energy supply issues. On the other hand, cell-free (CF) massive multiple-input multiple-output (MIMO) systems offer an efficient network architecture to realize the roll-out of the IoE. In this article, we first propose the paradigm of reconfigurable intelligent surface (RIS)-aided CF massive MIMO systems for WET, including its potential application scenarios and system architecture. The four-stage transmission procedure is discussed and analyzed to illustrate the practicality of the architecture. Then we put forward and analyze the hardware design of RIS. Particularly, we discuss the three corresponding operating modes and the amalgamation of WET technology and RIS-aided CF massive MIMO. Representative simulation results are given to confirm the superior performance achieved by our proposed schemes. Also, we investigate the optimal location of deploying multiple RISs to achieve the best system performance. Finally, several important research directions of RIS-aided CF massive MIMO systems with WET are presented to inspire further potential investigation.
This paper studies the problem of online user grouping, scheduling and power allocation in beyond 5G cellular-based Internet of things networks. Due to the massive number of devices trying to be granted to the network, non-orthogonal multiple access method is adopted in order to accommodate multiple devices in the same radio resource block. Different from most previous works, the objective is to maximize the number of served devices while allocating their transmission powers such that their real-time requirements as well as their limited operating energy are respected. First, we formulate the general problem as a mixed integer non-linear program (MINLP) that can be transformed easily to MILP for some special cases. Second, we study its computational complexity by characterizing the NP-hardness of different special cases. Then, by dividing the problem into multiple NOMA grouping and scheduling subproblems, efficient online competitive algorithms are proposed. Further, we show how to use these online algorithms and combine their solutions in a reinforcement learning setting to obtain the power allocation and hence the global solution to the problem. Our analysis are supplemented by simulation results to illustrate the performance of the proposed algorithms with comparison to optimal and state-of-the-art methods.
Reinforcement learning (RL) applications, where an agent can simply learn optimal behaviors by interacting with the environment, are quickly gaining tremendous success in a wide variety of applications from controlling simple pendulums to complex data centers. However, setting the right hyperparameters can have a huge impact on the deployed solution performance and reliability in the inference models, produced via RL, used for decision-making. Hyperparameter search itself is a laborious process that requires many iterations and computationally expensive to find the best settings that produce the best neural network architectures. In comparison to other neural network architectures, deep RL has not witnessed much hyperparameter tuning, due to its algorithm complexity and simulation platforms needed. In this paper, we propose a distributed variable-length genetic algorithm framework to systematically tune hyperparameters for various RL applications, improving training time and robustness of the architecture, via evolution. We demonstrate the scalability of our approach on many RL problems (from simple gyms to complex applications) and compared with Bayesian approach. Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment. Our results are imperative to advance deep reinforcement learning controllers for real-world problems.
This work presents a framework for multi-robot tour guidance in a partially known environment with uncertainty, such as a museum. In the proposed centralized multi-robot planner, a simultaneous matching and routing problem (SMRP) is formulated to match the humans with robot guides according to their selected places of interest (POIs) and generate the routes and schedules for the robots according to uncertain spatial and time estimation. A large neighborhood search algorithm is developed to efficiently find sub-optimal low-cost solutions for the SMRP. The scalability and optimality of the multi-robot planner are evaluated computationally under different numbers of humans, robots, and POIs. The largest case tested involves 50 robots, 250 humans, and 50 POIs. Then, a photo-realistic multi-robot simulation platform was developed based on Habitat-AI to verify the tour guiding performance in an uncertain indoor environment. Results demonstrate that the proposed centralized tour planner is scalable, makes a smooth trade-off in the plans under different environmental constraints, and can lead to robust performance with inaccurate uncertainty estimations (within a certain margin).
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are less studied in the industry recently due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn deep CTR models based on Gaussian processes, which can provide efficient uncertainty estimations along with the CTR predictions while maintaining the flexibility of deep neural networks. By linking the ability to estimate predictive uncertainties of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an $8.2\%$ social welfare improvement and an $8.0\%$ revenue lift.
In this paper, an interference-aware path planning scheme for a network of cellular-connected unmanned aerial vehicles (UAVs) is proposed. In particular, each UAV aims at achieving a tradeoff between maximizing energy efficiency and minimizing both wireless latency and the interference level caused on the ground network along its path. The problem is cast as a dynamic game among UAVs. To solve this game, a deep reinforcement learning algorithm, based on echo state network (ESN) cells, is proposed. The introduced deep ESN architecture is trained to allow each UAV to map each observation of the network state to an action, with the goal of minimizing a sequence of time-dependent utility functions. Each UAV uses ESN to learn its optimal path, transmission power level, and cell association vector at different locations along its path. The proposed algorithm is shown to reach a subgame perfect Nash equilibrium (SPNE) upon convergence. Moreover, an upper and lower bound for the altitude of the UAVs is derived thus reducing the computational complexity of the proposed algorithm. Simulation results show that the proposed scheme achieves better wireless latency per UAV and rate per ground user (UE) while requiring a number of steps that is comparable to a heuristic baseline that considers moving via the shortest distance towards the corresponding destinations. The results also show that the optimal altitude of the UAVs varies based on the ground network density and the UE data rate requirements and plays a vital role in minimizing the interference level on the ground UEs as well as the wireless transmission delay of the UAV.