亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph workloads pose a particularly challenging problem for query optimizers. They typically feature large queries made up of entirely many-to-many joins with complex correlations. This puts significant stress on traditional cardinality estimation methods which generally see catastrophic errors when estimating the size of queries with only a handful of joins. To overcome this, we propose COLOR, a framework for subgraph cardinality estimation which applies insights from graph compression theory to produce a compact summary that captures the global topology of the data graph. Further, we identify several key optimizations that enable tractable estimation over this summary even for large query graphs. We then evaluate several designs within this framework and find that they improve accuracy by up to 10$^3$x over all competing methods while maintaining fast inference, a small memory footprint, efficient construction, and graceful degradation under updates.

相關內容

Embodied agents require robust navigation systems to operate in unstructured environments, making the robustness of Simultaneous Localization and Mapping (SLAM) models critical to embodied agent autonomy. While real-world datasets are invaluable, simulation-based benchmarks offer a scalable approach for robustness evaluations. However, the creation of a challenging and controllable noisy world with diverse perturbations remains under-explored. To this end, we propose a novel, customizable pipeline for noisy data synthesis, aimed at assessing the resilience of multi-modal SLAM models against various perturbations. The pipeline comprises a comprehensive taxonomy of sensor and motion perturbations for embodied multi-modal (specifically RGB-D) sensing, categorized by their sources and propagation order, allowing for procedural composition. We also provide a toolbox for synthesizing these perturbations, enabling the transformation of clean environments into challenging noisy simulations. Utilizing the pipeline, we instantiate the large-scale Noisy-Replica benchmark, which includes diverse perturbation types, to evaluate the risk tolerance of existing advanced RGB-D SLAM models. Our extensive analysis uncovers the susceptibilities of both neural (NeRF and Gaussian Splatting -based) and non-neural SLAM models to disturbances, despite their demonstrated accuracy in standard benchmarks. Our code is publicly available at //github.com/Xiaohao-Xu/SLAM-under-Perturbation.

Generative models excel at creating images that closely mimic real scenes, suggesting they inherently encode scene representations. We introduce Intrinsic LoRA (I-LoRA), a general approach that uses Low-Rank Adaptation (LoRA) to discover scene intrinsics such as normals, depth, albedo, and shading from a wide array of generative models. I-LoRA is lightweight, adding minimally to the model's parameters and requiring very small datasets for this knowledge discovery. Our approach, applicable to Diffusion models, GANs, and Autoregressive models alike, generates intrinsics using the same output head as the original images. Through control experiments, we establish a correlation between the generative model's quality and the extracted intrinsics' accuracy. Finally, scene intrinsics obtained by our method with just hundreds to thousands of labeled images, perform on par with those from supervised methods trained on millions of labeled examples.

Identifying the fault in propellers is important to keep quadrotors operating safely and efficiently. The simulation-to-reality (sim-to-real) UAV fault diagnosis methods provide a cost-effective and safe approach to detecting propeller faults. However, due to the gap between simulation and reality, classifiers trained with simulated data usually underperform in real flights. In this work, a novel difference-based deep convolutional neural network (DDCNN) model is presented to address the above issue. It uses the difference features extracted by deep convolutional neural networks to reduce the sim-to-real gap. Moreover, a new domain adaptation (DA) method is presented to further bring the distribution of the real-flight data closer to that of the simulation data. The experimental results demonstrate that the DDCNN+DA model can increase the accuracy from 52.9% to 99.1% in real-world UAV fault detection.

Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the training pipeline of the prediction model. In these situations, post-processing is a viable alternative. However, current methods are tailored to specific problem settings and fairness definitions and hence, are not as broadly applicable as in-processing. In this work, we propose a framework that turns any regularized in-processing method into a post-processing approach. This procedure prescribes a way to obtain post-processing techniques for a much broader range of problem settings than the prior post-processing literature. We show theoretically and through extensive experiments that our framework preserves the good fairness-error trade-offs achieved with in-processing and can improve over the effectiveness of prior post-processing methods. Finally, we demonstrate several advantages of a modular mitigation strategy that disentangles the training of the prediction model from the fairness mitigation, including better performance on tasks with partial group labels.

Modern memory hierarchies work well with applications that have good spatial locality. Evolving (dynamic) graphs are important applications widely used to model graphs and networks with edge and vertex changes. They exhibit irregular memory access patterns and suffer from a high miss ratio and long miss penalty. Prefetching can be employed to predict and fetch future demand misses. However, current hardware prefetchers can not efficiently predict for applications with irregular memory accesses. In evolving graph applications, vertices that do not change during graph changes exhibit the same access correlation patterns. Current temporal prefetchers use one-to-one or one-to-many correlation to exploit these patterns. Similar patterns are recorded in the same entry, which causes aliasing and can lead to poor prefetch accuracy and coverage. This work proposes a software-assisted hardware prefetcher for evolving graphs. The key idea is to record the correlations between a sequence of vertex accesses and the following misses and then prefetch when the same vertex access sequence occurs in the future. The proposed Access-to-Miss Correlation (AMC) prefetcher provides a lightweight programming interface to identify the data structures of interest and sets the iteration boundary to update the correlation table. For the evaluated applications, AMC achieves a geomean speedup of 1.5x as compared to the best-performing prefetcher in prior work (VLDP). AMC can achieve an average of 62% accuracy and coverage, whereas VLDP has an accuracy of 31% and coverage of 23%.

Traditional robotic motion planning methods often struggle with fixed resolutions in dynamically changing environments. To address these challenges, we introduce the A-OctoMap, an adaptive Octo-Tree structure that enhances spatial representation and facilitates real-time, efficient motion planning. This novel framework allows for dynamic space partitioning and multi-resolution queries, significantly improving computational efficiency and precision. Key innovations include a tree-based data structure for enhanced geometric processing, real-time map updating for accurate trajectory planning, and efficient collision detection. Our extensive testing shows superior navigation safety and efficiency in complex settings compared to conventional methods. A-OctoMap sets a new standard for adaptive spatial mapping in autonomous systems, promising significant advancements in navigating unpredictable environments.

Modern approaches to autonomous driving rely heavily on learned components trained with large amounts of human driving data via imitation learning. However, these methods require large amounts of expensive data collection and even then face challenges with safely handling long-tail scenarios and compounding errors over time. At the same time, pure Reinforcement Learning (RL) methods can fail to learn performant policies in sparse, constrained, and challenging-to-define reward settings like driving. Both of these challenges make deploying purely cloned policies in safety critical applications like autonomous vehicles challenging. In this paper we propose Combining IMitation and Reinforcement Learning (CIMRL) approach - a framework that enables training driving policies in simulation through leveraging imitative motion priors and safety constraints. CIMRL does not require extensive reward specification and improves on the closed loop behavior of pure cloning methods. By combining RL and imitation, we demonstrate that our method achieves state-of-the-art results in closed loop simulation driving benchmarks.

Neural operators have recently grown in popularity as Partial Differential Equation (PDE) surrogate models. Learning solution functionals, rather than functions, has proven to be a powerful approach to calculate fast, accurate solutions to complex PDEs. While much work has been done evaluating neural operator performance on a wide variety of surrogate modeling tasks, these works normally evaluate performance on a single equation at a time. In this work, we develop a novel contrastive pretraining framework utilizing Generalized Contrastive Loss that improves neural operator generalization across multiple governing equations simultaneously. Governing equation coefficients are used to measure ground-truth similarity between systems. A combination of physics-informed system evolution and latent-space model output are anchored to input data and used in our distance function. We find that physics-informed contrastive pretraining improves accuracy for the Fourier Neural Operator in fixed-future and autoregressive rollout tasks for the 1D and 2D Heat, Burgers', and linear advection equations.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司