亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential algorithms are popular for experimental design, enabling emulation, optimisation and inference to be efficiently performed. For most of these applications bespoke software has been developed, but the approach is general and many of the actual computations performed in such software are identical. Motivated by the diverse problems that can in principle be solved with common code, this paper presents GaussED, a simple probabilistic programming language coupled to a powerful experimental design engine, which together automate sequential experimental design for approximating a (possibly nonlinear) quantity of interest in Gaussian processes models. Using a handful of commands, GaussED can be used to: solve linear partial differential equations, perform tomographic reconstruction from integral data and implement Bayesian optimisation with gradient data.

相關內容

Factorial designs are widely used due to their ability to accommodate multiple factors simultaneously. The factor-based regression with main effects and some interactions is the dominant strategy for downstream data analysis, delivering point estimators and standard errors via one single regression. Justification of these convenient estimators from the design-based perspective requires quantifying their sampling properties under the assignment mechanism conditioning on the potential outcomes. To this end, we derive the sampling properties of the factor-based regression estimators from both saturated and unsaturated models, and demonstrate the appropriateness of the robust standard errors for the Wald-type inference. We then quantify the bias-variance trade-off between the saturated and unsaturated models from the design-based perspective, and establish a novel design-based Gauss--Markov theorem that ensures the latter's gain in efficiency when the nuisance effects omitted indeed do not exist. As a byproduct of the process, we unify the definitions of factorial effects in various literatures and propose a location-shift strategy for their direct estimation from factor-based regressions. Our theory and simulation suggest using factor-based inference for general factorial effects, preferably with parsimonious specifications in accordance with the prior knowledge of zero nuisance effects.

We introduce an inductive logic programming approach that combines classical divide-and-conquer search with modern constraint-driven search. Our anytime approach can learn optimal, recursive, and large programs and supports predicate invention. Our experiments on three domains (classification, inductive general game playing, and program synthesis) show that our approach can increase predictive accuracies and reduce learning times.

Recent work on neuro-symbolic inductive logic programming has led to promising approaches that can learn explanatory rules from noisy, real-world data. While some proposals approximate logical operators with differentiable operators from fuzzy or real-valued logic that are parameter-free thus diminishing their capacity to fit the data, other approaches are only loosely based on logic making it difficult to interpret the learned "rules". In this paper, we propose learning rules with the recently proposed logical neural networks (LNN). Compared to others, LNNs offer strong connection to classical Boolean logic thus allowing for precise interpretation of learned rules while harboring parameters that can be trained with gradient-based optimization to effectively fit the data. We extend LNNs to induce rules in first-order logic. Our experiments on standard benchmarking tasks confirm that LNN rules are highly interpretable and can achieve comparable or higher accuracy due to their flexible parameterization.

Probabilistic numerical methods (PNMs) solve numerical problems via probabilistic inference. They have been developed for linear algebra, optimization, integration and differential equation simulation. PNMs naturally incorporate prior information about a problem and quantify uncertainty due to finite computational resources as well as stochastic input. In this paper, we present ProbNum: a Python library providing state-of-the-art probabilistic numerical solvers. ProbNum enables custom composition of PNMs for specific problem classes via a modular design as well as wrappers for off-the-shelf use. Tutorials, documentation, developer guides and benchmarks are available online at www.probnum.org.

Learning a graph topology to reveal the underlying relationship between data entities plays an important role in various machine learning and data analysis tasks. Under the assumption that structured data vary smoothly over a graph, the problem can be formulated as a regularised convex optimisation over a positive semidefinite cone and solved by iterative algorithms. Classic methods require an explicit convex function to reflect generic topological priors, e.g. the $\ell_1$ penalty for enforcing sparsity, which limits the flexibility and expressiveness in learning rich topological structures. We propose to learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O). Specifically, our model first unrolls an iterative primal-dual splitting algorithm into a neural network. The key structural proximal projection is replaced with a variational autoencoder that refines the estimated graph with enhanced topological properties. The model is trained in an end-to-end fashion with pairs of node data and graph samples. Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.

Spatio-temporal forecasting has numerous applications in analyzing wireless, traffic, and financial networks. Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data. Recent advances in deep learning allow for better modelling of spatial and temporal dependencies. While most of these models focus on obtaining accurate point forecasts, they do not characterize the prediction uncertainty. In this work, we consider the time-series data as a random realization from a nonlinear state-space model and target Bayesian inference of the hidden states for probabilistic forecasting. We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings. Thorough experimentation on several real world time-series datasets demonstrates that our approach provides better characterization of uncertainty while maintaining comparable accuracy to the state-of-the art point forecasting methods.

Knowledge graph reasoning, which aims at predicting the missing facts through reasoning with the observed facts, is critical to many applications. Such a problem has been widely explored by traditional logic rule-based approaches and recent knowledge graph embedding methods. A principled logic rule-based approach is the Markov Logic Network (MLN), which is able to leverage domain knowledge with first-order logic and meanwhile handle their uncertainty. However, the inference of MLNs is usually very difficult due to the complicated graph structures. Different from MLNs, knowledge graph embedding methods (e.g. TransE, DistMult) learn effective entity and relation embeddings for reasoning, which are much more effective and efficient. However, they are unable to leverage domain knowledge. In this paper, we propose the probabilistic Logic Neural Network (pLogicNet), which combines the advantages of both methods. A pLogicNet defines the joint distribution of all possible triplets by using a Markov logic network with first-order logic, which can be efficiently optimized with the variational EM algorithm. In the E-step, a knowledge graph embedding model is used for inferring the missing triplets, while in the M-step, the weights of logic rules are updated based on both the observed and predicted triplets. Experiments on multiple knowledge graphs prove the effectiveness of pLogicNet over many competitive baselines.

This paper studies the problem of domain division problem which aims to segment instances drawn from different probabilistic distributions. Such a problem exists in many previous recognition tasks, such as Open Set Learning (OSL) and Generalized Zero-Shot Learning (G-ZSL), where the testing instances come from either seen or novel/unseen classes of different probabilistic distributions. Previous works focused on either only calibrating the confident prediction of classifiers of seen classes (W-SVM), or taking unseen classes as outliers. In contrast, this paper proposes a probabilistic way of directly estimating and fine-tuning the decision boundary between seen and novel/unseen classes. In particular, we propose a domain division algorithm of learning to split the testing instances into known, unknown and uncertain domains, and then conduct recognize tasks in each domain. Two statistical tools, namely, bootstrapping and Kolmogorov-Smirnov (K-S) Test, for the first time, are introduced to discover and fine-tune the decision boundary of each domain. Critically, the uncertain domain is newly introduced in our framework to adopt those instances whose domain cannot be predicted confidently. Extensive experiments demonstrate that our approach achieved the state-of-the-art performance on OSL and G-ZSL benchmarks.

Dynamic topic models (DTMs) model the evolution of prevalent themes in literature, online media, and other forms of text over time. DTMs assume that word co-occurrence statistics change continuously and therefore impose continuous stochastic process priors on their model parameters. These dynamical priors make inference much harder than in regular topic models, and also limit scalability. In this paper, we present several new results around DTMs. First, we extend the class of tractable priors from Wiener processes to the generic class of Gaussian processes (GPs). This allows us to explore topics that develop smoothly over time, that have a long-term memory or are temporally concentrated (for event detection). Second, we show how to perform scalable approximate inference in these models based on ideas around stochastic variational inference and sparse Gaussian processes. This way we can train a rich family of DTMs to massive data. Our experiments on several large-scale datasets show that our generalized model allows us to find interesting patterns that were not accessible by previous approaches.

This paper considers the integrated problem of quay crane assignment, quay crane scheduling, yard location assignment, and vehicle dispatching operations at a container terminal. The main objective is to minimize vessel turnover times and maximize the terminal throughput, which are key economic drivers in terminal operations. Due to their computational complexities, these problems are not optimized jointly in existing work. This paper revisits this limitation and proposes Mixed Integer Programming (MIP) and Constraint Programming (CP) models for the integrated problem, under some realistic assumptions. Experimental results show that the MIP formulation can only solve small instances, while the CP model finds optimal solutions in reasonable times for realistic instances derived from actual container terminal operations.

北京阿比特科技有限公司