亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a random recursive tree model with two communities, called balanced community modulated random recursive tree, or BCMRT in short. In this setting, pairs of nodes of different type appear sequentially. Each node of the pair decides independently to attach to their own type with probability 1-q, or to the other type with probability q, and then chooses its parent uniformly within the set of existing nodes with the selected type. We find that the limiting degree distributions coincide for different q. Therefore, as far as inference is concerned, other statistics have to be studied. We first consider the setting where the time-labels of the nodes, i.e., their time of arrival, are observed but their type is not. In this setting, we design a consistent estimator for q and provide bounds for the feasibility of testing between two different values of q. Moreover, we show that if q is small enough, then it is possible to cluster the nodes in a way correlated with the true partition, even though the algorithm is exponential in time (in passing, we show that our clustering procedure is intimately connected to the NP-hard problem of minimum fair bisection). In the unlabelled setting, i.e., when only the tree structure is observed, we show that it is possible to test between different values of q in a strictly better way than by random guessing. This follows from a delicate analysis of the sum-of-distances statistic.

相關內容

Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.

Within the nonparametric diffusion model, we develop a multiple test to infer about similarity of an unknown drift $b$ to some reference drift $b_0$: At prescribed significance, we simultaneously identify those regions where violation from similiarity occurs, without a priori knowledge of their number, size and location. This test is shown to be minimax-optimal and adaptive. At the same time, the procedure is robust under small deviation from Brownian motion as the driving noise process. A detailed investigation for fractional driving noise, which is neither a semimartingale nor a Markov process, is provided for Hurst indices close to the Brownian motion case.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.

In Coevolving Latent Space Networks with Attractors (CLSNA) models, nodes in a latent space represent social actors, and edges indicate their dynamic interactions. Attractors are added at the latent level to capture the notion of attractive and repulsive forces between nodes, borrowing from dynamical systems theory. However, CLSNA reliance on MCMC estimation makes scaling difficult, and the requirement for nodes to be present throughout the study period limit practical applications. We address these issues by (i) introducing a Stochastic gradient descent (SGD) parameter estimation method, (ii) developing a novel approach for uncertainty quantification using SGD, and (iii) extending the model to allow nodes to join and leave over time. Simulation results show that our extensions result in little loss of accuracy compared to MCMC, but can scale to much larger networks. We apply our approach to the longitudinal social networks of members of US Congress on the social media platform X. Accounting for node dynamics overcomes selection bias in the network and uncovers uniquely and increasingly repulsive forces within the Republican Party.

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

Although the asymptotic properties of the parameter estimator have been derived in the $p_{0}$ model for directed graphs with the differentially private bi-degree sequence, asymptotic theory in general models is still lacking. In this paper, we release the bi-degree sequence of directed graphs via the discrete Laplace mechanism, which satisfies differential privacy. We use the moment method to estimate the unknown model parameter. We establish a unified asymptotic result, in which consistency and asymptotic normality of the differentially private estimator holds. We apply the unified theoretical result to the Probit model. Simulations and a real data demonstrate our theoretical findings.

We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyper-chaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her from the data of their light curves.

We introduce a statistical method for modeling and forecasting functional panel data, where each element is a density. Density functions are nonnegative and have a constrained integral and thus do not constitute a linear vector space. We implement a center log-ratio transformation to transform densities into unconstrained functions. These functions exhibit cross-sectionally correlation and temporal dependence. Via a functional analysis of variance decomposition, we decompose the unconstrained functional panel data into a deterministic trend component and a time-varying residual component. To produce forecasts for the time-varying component, a functional time series forecasting method, based on the estimation of the long-range covariance, is implemented. By combining the forecasts of the time-varying residual component with the deterministic trend component, we obtain h-step-ahead forecast curves for multiple populations. Illustrated by age- and sex-specific life-table death counts in the United States, we apply our proposed method to generate forecasts of the life-table death counts for 51 states.

For Hamiltonian systems with non-canonical structure matrices, a new family of fourth-order energy-preserving integrators is presented. The integrators take a form of a combination of Runge--Kutta methods and continuous-stage Runge--Kutta methods and feature a set of free parameters that offer greater flexibility and efficiency. Specifically, we demonstrate that by carefully choosing these free parameters a simplified Newton iteration applied to the integrators of order four can be parallelizable. This results in faster and more efficient integrators compared with existing fourth-order energy-preserving integrators.

Intelligent tutoring systems optimize the selection and timing of learning materials to enhance understanding and long-term retention. This requires estimates of both the learner's progress (''knowledge tracing''; KT), and the prerequisite structure of the learning domain (''knowledge mapping''). While recent deep learning models achieve high KT accuracy, they do so at the expense of the interpretability of psychologically-inspired models. In this work, we present a solution to this trade-off. PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics, thus achieving interpretability by design. Moreover, by using scalable Bayesian inference, PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories. Evaluated on three datasets from online learning platforms, PSI-KT achieves superior multi-step predictive accuracy and scalable inference in continual-learning settings, all while providing interpretable representations of learner-specific traits and the prerequisite structure of knowledge that causally supports learning. In sum, predictive, scalable and interpretable knowledge tracing with solid knowledge mapping lays a key foundation for effective personalized learning to make education accessible to a broad, global audience.

北京阿比特科技有限公司