亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multimodal reasoning, an area of artificial intelligence that aims at make inferences from multimodal signals such as vision, language and speech, has drawn more and more attention in recent years. People with different personalities may respond differently to the same situation. However, such individual personalities were ignored in the previous studies. In this work, we introduce a new Personality-aware Human-centric Multimodal Reasoning (Personality-aware HMR) task, and accordingly construct a new dataset based on The Big Bang Theory television shows, to predict the behavior of a specific person at a specific moment, given the multimodal information of its past and future moments. The Myers-Briggs Type Indicator (MBTI) was annotated and utilized in the task to represent individuals' personalities. We benchmark the task by proposing three baseline methods, two were adapted from the related tasks and one was newly proposed for our task. The experimental results demonstrate that personality can effectively improve the performance of human-centric multimodal reasoning. To further solve the lack of personality annotation in real-life scenes, we introduce an extended task called Personality-predicted HMR, and propose the corresponding methods, to predict the MBTI personality at first, and then use the predicted personality to help multimodal reasoning. The experimental results show that our method can accurately predict personality and achieves satisfactory multimodal reasoning performance without relying on personality annotations.

相關內容

A great deal of progress has been made in image captioning, driven by research into how to encode the image using pre-trained models. This includes visual encodings (e.g. image grid features or detected objects) and more recently textual encodings (e.g. image tags or text descriptions of image regions). As more advanced encodings are available and incorporated, it is natural to ask: how to efficiently and effectively leverage the heterogeneous set of encodings? In this paper, we propose to regard the encodings as augmented views of the input image. The image captioning model encodes each view independently with a shared encoder efficiently, and a contrastive loss is incorporated across the encoded views in a novel way to improve their representation quality and the model's data efficiency. Our proposed hierarchical decoder then adaptively weighs the encoded views according to their effectiveness for caption generation by first aggregating within each view at the token level, and then across views at the view level. We demonstrate significant performance improvements of +5.6% CIDEr on MS-COCO and +12.9% CIDEr on Flickr30k compared to state of the arts, and conduct rigorous analyses to demonstrate the importance of each part of our design.

Sign language recognition and translation first uses a recognition module to generate glosses from sign language videos and then employs a translation module to translate glosses into spoken sentences. Most existing works focus on the recognition step, while paying less attention to sign language translation. In this work, we propose a task-aware instruction network, namely TIN-SLT, for sign language translation, by introducing the instruction module and the learning-based feature fuse strategy into a Transformer network. In this way, the pre-trained model's language ability can be well explored and utilized to further boost the translation performance. Moreover, by exploring the representation space of sign language glosses and target spoken language, we propose a multi-level data augmentation scheme to adjust the data distribution of the training set. We conduct extensive experiments on two challenging benchmark datasets, PHOENIX-2014-T and ASLG-PC12, on which our method outperforms former best solutions by 1.65 and 1.42 in terms of BLEU-4. Our code is published at //github.com/yongcaoplus/TIN-SLT.

Cooperative multi-agent reinforcement learning (MARL) is a challenging task, as agents must learn complex and diverse individual strategies from a shared team reward. However, existing methods struggle to distinguish and exploit important individual experiences, as they lack an effective way to decompose the team reward into individual rewards. To address this challenge, we propose DIFFER, a powerful theoretical framework for decomposing individual rewards to enable fair experience replay in MARL. By enforcing the invariance of network gradients, we establish a partial differential equation whose solution yields the underlying individual reward function. The individual TD-error can then be computed from the solved closed-form individual rewards, indicating the importance of each piece of experience in the learning task and guiding the training process. Our method elegantly achieves an equivalence to the original learning framework when individual experiences are homogeneous, while also adapting to achieve more muscular efficiency and fairness when diversity is observed.Our extensive experiments on popular benchmarks validate the effectiveness of our theory and method, demonstrating significant improvements in learning efficiency and fairness.

Reasoning over knowledge graphs (KGs) is a challenging task that requires a deep understanding of the complex relationships between entities and the underlying logic of their relations. Current approaches rely on learning geometries to embed entities in vector space for logical query operations, but they suffer from subpar performance on complex queries and dataset-specific representations. In this paper, we propose a novel decoupled approach, Language-guided Abstract Reasoning over Knowledge graphs (LARK), that formulates complex KG reasoning as a combination of contextual KG search and logical query reasoning, to leverage the strengths of graph extraction algorithms and large language models (LLM), respectively. Our experiments demonstrate that the proposed approach outperforms state-of-the-art KG reasoning methods on standard benchmark datasets across several logical query constructs, with significant performance gain for queries of higher complexity. Furthermore, we show that the performance of our approach improves proportionally to the increase in size of the underlying LLM, enabling the integration of the latest advancements in LLMs for logical reasoning over KGs. Our work presents a new direction for addressing the challenges of complex KG reasoning and paves the way for future research in this area.

Large language models are powerful text processors and reasoners, but are still subject to limitations including outdated knowledge and hallucinations, which necessitates connecting them to the world. Retrieval-augmented large language models have raised extensive attention for grounding model generation on external knowledge. However, retrievers struggle to capture relevance, especially for queries with complex information needs. Recent work has proposed to improve relevance modeling by having large language models actively involved in retrieval, i.e., to improve retrieval with generation. In this paper, we show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner. A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge which in turn helps generate a better output in the next iteration. Compared with recent work which interleaves retrieval with generation when producing an output, Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints. We evaluate Iter-RetGen on multi-hop question answering, fact verification, and commonsense reasoning, and show that it can flexibly leverage parametric knowledge and non-parametric knowledge, and is superior to or competitive with state-of-the-art retrieval-augmented baselines while causing fewer overheads of retrieval and generation. We can further improve performance via generation-augmented retrieval adaptation.

Recently, a new paradigm called Differentiable Search Index (DSI) has been proposed for document retrieval, wherein a sequence-to-sequence model is learned to directly map queries to relevant document identifiers. The key idea behind DSI is to fully parameterize traditional ``index-retrieve'' pipelines within a single neural model, by encoding all documents in the corpus into the model parameters. In essence, DSI needs to resolve two major questions: (1) how to assign an identifier to each document, and (2) how to learn the associations between a document and its identifier. In this work, we propose a Semantic-Enhanced DSI model (SE-DSI) motivated by Learning Strategies in the area of Cognitive Psychology. Our approach advances original DSI in two ways: (1) For the document identifier, we take inspiration from Elaboration Strategies in human learning. Specifically, we assign each document an Elaborative Description based on the query generation technique, which is more meaningful than a string of integers in the original DSI; and (2) For the associations between a document and its identifier, we take inspiration from Rehearsal Strategies in human learning. Specifically, we select fine-grained semantic features from a document as Rehearsal Contents to improve document memorization. Both the offline and online experiments show improved retrieval performance over prevailing baselines.

Making image retrieval methods practical for real-world search applications requires significant progress in dataset scales, entity comprehension, and multimodal information fusion. In this work, we introduce \textbf{E}ntity-\textbf{D}riven \textbf{I}mage \textbf{S}earch (EDIS), a challenging dataset for cross-modal image search in the news domain. EDIS consists of 1 million web images from actual search engine results and curated datasets, with each image paired with a textual description. Unlike datasets that assume a small set of single-modality candidates, EDIS reflects real-world web image search scenarios by including a million multimodal image-text pairs as candidates. EDIS encourages the development of retrieval models that simultaneously address cross-modal information fusion and matching. To achieve accurate ranking results, a model must: 1) understand named entities and events from text queries, 2) ground entities onto images or text descriptions, and 3) effectively fuse textual and visual representations. Our experimental results show that EDIS challenges state-of-the-art methods with dense entities and a large-scale candidate set. The ablation study also proves that fusing textual features with visual features is critical in improving retrieval results.

More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.

Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司