A 360-degree (omni-directional) image provides an all-encompassing spherical view of a scene. Recently, there has been an increasing interest in synthesising 360-degree images from conventional narrow field of view (NFoV) images captured by digital cameras and smartphones, for providing immersive experiences in various scenarios such as virtual reality. Yet, existing methods typically fall short in synthesizing intricate visual details or ensure the generated images align consistently with user-provided prompts. In this study, autoregressive omni-aware generative network (AOG-Net) is proposed for 360-degree image generation by out-painting an incomplete 360-degree image progressively with NFoV and text guidances joinly or individually. This autoregressive scheme not only allows for deriving finer-grained and text-consistent patterns by dynamically generating and adjusting the process but also offers users greater flexibility to edit their conditions throughout the generation process. A global-local conditioning mechanism is devised to comprehensively formulate the outpainting guidance in each autoregressive step. Text guidances, omni-visual cues, NFoV inputs and omni-geometry are encoded and further formulated with cross-attention based transformers into a global stream and a local stream into a conditioned generative backbone model. As AOG-Net is compatible to leverage large-scale models for the conditional encoder and the generative prior, it enables the generation to use extensive open-vocabulary text guidances. Comprehensive experiments on two commonly used 360-degree image datasets for both indoor and outdoor settings demonstrate the state-of-the-art performance of our proposed method. Our code will be made publicly available.
Dynamic Digital Humans (DDHs) are 3D digital models that are animated using predefined motions and are inevitably bothered by noise/shift during the generation process and compression distortion during the transmission process, which needs to be perceptually evaluated. Usually, DDHs are displayed as 2D rendered animation videos and it is natural to adapt video quality assessment (VQA) methods to DDH quality assessment (DDH-QA) tasks. However, the VQA methods are highly dependent on viewpoints and less sensitive to geometry-based distortions. Therefore, in this paper, we propose a novel no-reference (NR) geometry-aware video quality assessment method for DDH-QA challenge. Geometry characteristics are described by the statistical parameters estimated from the DDHs' geometry attribute distributions. Spatial and temporal features are acquired from the rendered videos. Finally, all kinds of features are integrated and regressed into quality values. Experimental results show that the proposed method achieves state-of-the-art performance on the DDH-QA database.
Capsule networks (CapsNets) aim to parse images into a hierarchy of objects, parts, and their relations using a two-step process involving part-whole transformation and hierarchical component routing. However, this hierarchical relationship modeling is computationally expensive, which has limited the wider use of CapsNet despite its potential advantages. The current state of CapsNet models primarily focuses on comparing their performance with capsule baselines, falling short of achieving the same level of proficiency as deep CNN variants in intricate tasks. To address this limitation, we present an efficient approach for learning capsules that surpasses canonical baseline models and even demonstrates superior performance compared to high-performing convolution models. Our contribution can be outlined in two aspects: firstly, we introduce a group of subcapsules onto which an input vector is projected. Subsequently, we present the Hybrid Gromov-Wasserstein framework, which initially quantifies the dissimilarity between the input and the components modeled by the subcapsules, followed by determining their alignment degree through optimal transport. This innovative mechanism capitalizes on new insights into defining alignment between the input and subcapsules, based on the similarity of their respective component distributions. This approach enhances CapsNets' capacity to learn from intricate, high-dimensional data while retaining their interpretability and hierarchical structure. Our proposed model offers two distinct advantages: (i) its lightweight nature facilitates the application of capsules to more intricate vision tasks, including object detection; (ii) it outperforms baseline approaches in these demanding tasks.
Current research is primarily dedicated to advancing the accuracy of camera-only 3D object detectors (apprentice) through the knowledge transferred from LiDAR- or multi-modal-based counterparts (expert). However, the presence of the domain gap between LiDAR and camera features, coupled with the inherent incompatibility in temporal fusion, significantly hinders the effectiveness of distillation-based enhancements for apprentices. Motivated by the success of uni-modal distillation, an apprentice-friendly expert model would predominantly rely on camera features, while still achieving comparable performance to multi-modal models. To this end, we introduce VCD, a framework to improve the camera-only apprentice model, including an apprentice-friendly multi-modal expert and temporal-fusion-friendly distillation supervision. The multi-modal expert VCD-E adopts an identical structure as that of the camera-only apprentice in order to alleviate the feature disparity, and leverages LiDAR input as a depth prior to reconstruct the 3D scene, achieving the performance on par with other heterogeneous multi-modal experts. Additionally, a fine-grained trajectory-based distillation module is introduced with the purpose of individually rectifying the motion misalignment for each object in the scene. With those improvements, our camera-only apprentice VCD-A sets new state-of-the-art on nuScenes with a score of 63.1% NDS.
Deep hashing has been intensively studied and successfully applied in large-scale image retrieval systems due to its efficiency and effectiveness. Recent studies have recognized that the existence of adversarial examples poses a security threat to deep hashing models, that is, adversarial vulnerability. Notably, it is challenging to efficiently distill reliable semantic representatives for deep hashing to guide adversarial learning, and thereby it hinders the enhancement of adversarial robustness of deep hashing-based retrieval models. Moreover, current researches on adversarial training for deep hashing are hard to be formalized into a unified minimax structure. In this paper, we explore Semantic-Aware Adversarial Training (SAAT) for improving the adversarial robustness of deep hashing models. Specifically, we conceive a discriminative mainstay features learning (DMFL) scheme to construct semantic representatives for guiding adversarial learning in deep hashing. Particularly, our DMFL with the strict theoretical guarantee is adaptively optimized in a discriminative learning manner, where both discriminative and semantic properties are jointly considered. Moreover, adversarial examples are fabricated by maximizing the Hamming distance between the hash codes of adversarial samples and mainstay features, the efficacy of which is validated in the adversarial attack trials. Further, we, for the first time, formulate the formalized adversarial training of deep hashing into a unified minimax optimization under the guidance of the generated mainstay codes. Extensive experiments on benchmark datasets show superb attack performance against the state-of-the-art algorithms, meanwhile, the proposed adversarial training can effectively eliminate adversarial perturbations for trustworthy deep hashing-based retrieval. Our code is available at //github.com/xandery-geek/SAAT.
Neural network verification mainly focuses on local robustness properties, which can be checked by bounding the image (set of outputs) of a given input set. However, often it is important to know whether a given property holds globally for the input domain, and if not then for what proportion of the input the property is true. To analyze such properties requires computing preimage abstractions of neural networks. In this work, we propose an efficient anytime algorithm for generating symbolic under-approximations of the preimage of any polyhedron output set for neural networks. Our algorithm combines a novel technique for cheaply computing polytope preimage under-approximations using linear relaxation, with a carefully-designed refinement procedure that iteratively partitions the input region into subregions using input and ReLU splitting in order to improve the approximation. Empirically, we validate the efficacy of our method across a range of domains, including a high-dimensional MNIST classification task beyond the reach of existing preimage computation methods. Finally, as use cases, we showcase the application to quantitative verification and robustness analysis. We present a sound and complete algorithm for the former, which exploits our disjoint union of polytopes representation to provide formal guarantees. For the latter, we find that our method can provide useful quantitative information even when standard verifiers cannot verify a robustness property.
The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Convolutional neural networks (CNNs) have shown dramatic improvements in single image super-resolution (SISR) by using large-scale external samples. Despite their remarkable performance based on the external dataset, they cannot exploit internal information within a specific image. Another problem is that they are applicable only to the specific condition of data that they are supervised. For instance, the low-resolution (LR) image should be a "bicubic" downsampled noise-free image from a high-resolution (HR) one. To address both issues, zero-shot super-resolution (ZSSR) has been proposed for flexible internal learning. However, they require thousands of gradient updates, i.e., long inference time. In this paper, we present Meta-Transfer Learning for Zero-Shot Super-Resolution (MZSR), which leverages ZSSR. Precisely, it is based on finding a generic initial parameter that is suitable for internal learning. Thus, we can exploit both external and internal information, where one single gradient update can yield quite considerable results. (See Figure 1). With our method, the network can quickly adapt to a given image condition. In this respect, our method can be applied to a large spectrum of image conditions within a fast adaptation process.
Few-shot image classification aims to classify unseen classes with limited labeled samples. Recent works benefit from the meta-learning process with episodic tasks and can fast adapt to class from training to testing. Due to the limited number of samples for each task, the initial embedding network for meta learning becomes an essential component and can largely affects the performance in practice. To this end, many pre-trained methods have been proposed, and most of them are trained in supervised way with limited transfer ability for unseen classes. In this paper, we proposed to train a more generalized embedding network with self-supervised learning (SSL) which can provide slow and robust representation for downstream tasks by learning from the data itself. We evaluate our work by extensive comparisons with previous baseline methods on two few-shot classification datasets ({\em i.e.,} MiniImageNet and CUB). Based on the evaluation results, the proposed method achieves significantly better performance, i.e., improve 1-shot and 5-shot tasks by nearly \textbf{3\%} and \textbf{4\%} on MiniImageNet, by nearly \textbf{9\%} and \textbf{3\%} on CUB. Moreover, the proposed method can gain the improvement of (\textbf{15\%}, \textbf{13\%}) on MiniImageNet and (\textbf{15\%}, \textbf{8\%}) on CUB by pretraining using more unlabeled data. Our code will be available at \hyperref[//github.com/phecy/SSL-FEW-SHOT.]{//github.com/phecy/ssl-few-shot.}
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.