Many major questions in the theory of evolutionary dynamics can in a meaningful sense be mapped to analyses of stochastic trajectories in game theoretic contexts. Often the approach is to analyze small numbers of distinct populations and/or to assume dynamics occur within a regime of population sizes large enough that deterministic trajectories are an excellent approximation of reality. The addition of ecological factors, termed "eco-evolutionary dynamics", further complicates the dynamics and results in many problems which are intractable or impractically messy for current theoretical methods. However, an analogous but underexplored approach is to analyze these systems with an eye primarily towards uncertainty in the models themselves. In the language of researchers in Reinforcement Learning and adjacent fields, a Partially Observable Markov Process. Here we introduce a duality which maps the complexity of accounting for both ecology and individual genotypic/phenotypic types onto a problem of accounting solely for underlying information-theoretic computations rather than drawing physical boundaries which do not change the computations. Armed with this equivalence between computation and the relevant biophysics, which we term Taak-duality, we attack the problem of "directed evolution" in the form of a Partially Observable Markov Decision Process. This provides a tractable case of studying eco-evolutionary trajectories of a highly general type, and of analyzing questions of potential limits on the efficiency of evolution in the directed case.
Stochastic optimization has found wide applications in minimizing objective functions in machine learning, which motivates a lot of theoretical studies to understand its practical success. Most of existing studies focus on the convergence of optimization errors, while the generalization analysis of stochastic optimization is much lagging behind. This is especially the case for nonconvex and nonsmooth problems often encountered in practice. In this paper, we initialize a systematic stability and generalization analysis of stochastic optimization on nonconvex and nonsmooth problems. We introduce novel algorithmic stability measures and establish their quantitative connection on the gap between population gradients and empirical gradients, which is then further extended to study the gap between the Moreau envelope of the empirical risk and that of the population risk. To our knowledge, these quantitative connection between stability and generalization in terms of either gradients or Moreau envelopes have not been studied in the literature. We introduce a class of sampling-determined algorithms, for which we develop bounds for three stability measures. Finally, we apply these discussions to derive error bounds for stochastic gradient descent and its adaptive variant, where we show how to achieve an implicit regularization by tuning the step sizes and the number of iterations.
Extended Dynamic Mode Decomposition (EDMD) is a data-driven tool for forecasting and model reduction of dynamics, which has been extensively taken up in the physical sciences. While the method is conceptually simple, in deterministic chaos it is unclear what its properties are or even what it converges to. In particular, it is not clear how EDMD's least-squares approximation treats the classes of regular functions needed to make sense of chaotic dynamics. We develop for the first time a general, rigorous theory of EDMD on the simplest examples of chaotic maps: analytic expanding maps of the circle. To do this, we prove a new, basic approximation result in the theory of orthogonal polynomials on the unit circle (OPUC) and apply methods from transfer operator theory. We show that in the infinite-data limit, the least-squares projection error is exponentially small for trigonometric polynomial observable dictionaries. As a result, we show that the forecasts and Koopman spectral data produced using EDMD in this setting converge to the physically meaningful limits, exponentially fast with respect to the size of the dictionary. This demonstrates that with only a relatively small polynomial dictionary, EDMD can be very effective, even when the sampling measure is not uniform. Furthermore, our OPUC result suggests that data-based least-squares projections may be a very effective approximation strategy.
We study the evolution of behavior under reinforcement learning in a Prisoner's Dilemma where agents interact in a regular network and can learn about whether they play one-shot or repeatedly by incurring a cost of deliberation. With respect to other behavioral rules used in the literature, (i) we confirm the existence of a threshold value of the probability of repeated interaction, switching the emergent behavior from intuitive defector to dual-process cooperator; (ii) we find a different role of the node degree, with smaller degrees reducing the evolutionary success of dual-process cooperators; (iii) we observe a higher frequency of deliberation.
Compliant grippers, owing to adaptivity and safety, have attracted considerable attention for unstructured grasping in real applications, such as industrial or logistic scenarios. However, accurately modeling the bidirectional relationship between shape deformation and contact force for such grippers, the Fin-Ray grippers as an example, remains stagnant to date. To address this research gap, this article devises, presents, and experimentally validates a universal bidirectional force-displacement mathematical model for compliant grippers based on the co-rotational concept, which endows such grippers with an intrinsic force sensing capability and offers a better insight into the design optimization. In Part I of the article, we introduce the fundamental theory of the co-rotational approach, where arbitrary large deformation of beam elements can be modeled. Its intrinsic principle allows taking materials with varying stiffness, various connection types, and key design parameters into consideration with few assumptions. Further, the force-displacement relationship is numerically derived, providing accurate displacement estimations of the gripper under external forces with minor computational loads. The performance of the proposed method is experimentally verified through comparison with Finite Element Analysis (FEA) in simulation, obtaining a fair degree of accuracy (6%), and design optimization of Fin-Ray grippers is systematically investigated. Part II of this article demonstrating the force sensing capabilities and the effects of representative co-rotational modeling parameters on model accuracy is released in Arxiv.
We study a wireless jamming problem consisting of the competition between a legitimate receiver and a jammer, as a zero-sum game with the value to maximize/minimize being the channel capacity at the receiver's side. Most of the approaches found in the literature consider the two players to be stationary nodes. Instead, we investigate what happens when they can change location, specifically moving along a linear geometry. We frame this at first as a static game, which can be solved in closed form, and subsequently we extend it to a dynamic game, under three different versions for what concerns completeness/perfection of mutual information about the adversary's position, corresponding to different assumptions of concealment/sequentiality of the moves, respectively. We first provide some theoretical conditions that hold for the static game and also help identify good strategies valid under any setup, including dynamic games. Since dynamic games, although more realistic, are characterized by an exploding strategy space, we exploit reinforcement learning to obtain efficient strategies leading to equilibrium outcomes. We show how theoretical findings can be used to train smart agents to play the game, and validate our approach in practical setups.
Data assimilation, in its most comprehensive form, addresses the Bayesian inverse problem of identifying plausible state trajectories that explain noisy or incomplete observations of stochastic dynamical systems. Various approaches have been proposed to solve this problem, including particle-based and variational methods. However, most algorithms depend on the transition dynamics for inference, which becomes intractable for long time horizons or for high-dimensional systems with complex dynamics, such as oceans or atmospheres. In this work, we introduce score-based data assimilation for trajectory inference. We learn a score-based generative model of state trajectories based on the key insight that the score of an arbitrarily long trajectory can be decomposed into a series of scores over short segments. After training, inference is carried out using the score model, in a non-autoregressive manner by generating all states simultaneously. Quite distinctively, we decouple the observation model from the training procedure and use it only at inference to guide the generative process, which enables a wide range of zero-shot observation scenarios. We present theoretical and empirical evidence supporting the effectiveness of our method.
We consider here the discrete time dynamics described by a transformation $T:M \to M$, where $T$ is either the action of shift $T=\sigma$ on the symbolic space $M=\{1,2,...,d\}^\mathbb{N}$, or, $T$ describes the action of a $d$ to $1$ expanding transformation $T:S^1 \to S^1$ of class $C^{1+\alpha}$ (\,for example $x \to T(x) =d\, x $ (mod $1) $\,), where $M=S^1$ is the unit circle. It is known that the infinite-dimensional manifold $\mathcal{N}$ of equilibrium probabilities for H\"older potentials $A:M \to \mathbb{R}$ is an analytical manifold and carries a natural Riemannian metric associated with the asymptotic variance. We show here that under the assumption of the existence of a Fourier-like Hilbert basis for the kernel of the Ruelle operator there exists geodesics paths. When $T=\sigma$ and $M=\{0,1\}^\mathbb{N}$ such basis exists. In a different direction, we also consider the KL-divergence $D_{KL}(\mu_1,\mu_2)$ for a pair of equilibrium probabilities. If $D_{KL}(\mu_1,\mu_2)=0$, then $\mu_1=\mu_2$. Although $D_{KL}$ is not a metric in $\mathcal{N}$, it describes the proximity between $\mu_1$ and $\mu_2$. A natural problem is: for a fixed probability $\mu_1\in \mathcal{N}$ consider the probability $\mu_2$ in a convex set of probabilities in $\mathcal{N}$ which minimizes $D_{KL}(\mu_1,\mu_2)$. This minimization problem is a dynamical version of the main issues considered in information projections. We consider this problem in $\mathcal{N}$, a case where all probabilities are dynamically invariant, getting explicit equations for the solution sought. Triangle and Pythagorean inequalities will be investigated.
We propose a method that leverages graph neural networks, multi-level message passing, and unsupervised training to enable real-time prediction of realistic clothing dynamics. Whereas existing methods based on linear blend skinning must be trained for specific garments, our method is agnostic to body shape and applies to tight-fitting garments as well as loose, free-flowing clothing. Our method furthermore handles changes in topology (e.g., garments with buttons or zippers) and material properties at inference time. As one key contribution, we propose a hierarchical message-passing scheme that efficiently propagates stiff stretching modes while preserving local detail. We empirically show that our method outperforms strong baselines quantitatively and that its results are perceived as more realistic than state-of-the-art methods.
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.