The growing usage of research software in the research community has highlighted the need to recognize and acknowledge the contributions made not only by researchers but also by Research Software Engineers. However, the existing methods for crediting research software and Research Software Engineers have proven to be insufficient. In response, we have developed FAIRSECO, an extensible open source framework with the objective of assessing the impact of research software in research through the evaluation of various factors. The FAIRSECO framework addresses two critical information needs: firstly, it provides potential users of research software with metrics related to software quality and FAIRness. Secondly, the framework provides information for those who wish to measure the success of a project by offering impact data. By exploring the quality and impact of research software, our aim is to ensure that Research Software Engineers receive the recognition they deserve for their valuable contributions.
The recent strides in artificial intelligence (AI) and machine learning (ML) have propelled the rise of TinyML, a paradigm enabling AI computations at the edge without dependence on cloud connections. While TinyML offers real-time data analysis and swift responses critical for diverse applications, its devices' intrinsic resource limitations expose them to security risks. This research delves into the adversarial vulnerabilities of AI models on resource-constrained embedded hardware, with a focus on Model Extraction and Evasion Attacks. Our findings reveal that adversarial attacks from powerful host machines could be transferred to smaller, less secure devices like ESP32 and Raspberry Pi. This illustrates that adversarial attacks could be extended to tiny devices, underscoring vulnerabilities, and emphasizing the necessity for reinforced security measures in TinyML deployments. This exploration enhances the comprehension of security challenges in TinyML and offers insights for safeguarding sensitive data and ensuring device dependability in AI-powered edge computing settings.
Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
GenerateCT, the first approach to generating 3D medical imaging conditioned on free-form medical text prompts, incorporates a text encoder and three key components: a novel causal vision transformer for encoding 3D CT volumes, a text-image transformer for aligning CT and text tokens, and a text-conditional super-resolution diffusion model. Without directly comparable methods in 3D medical imaging, we benchmarked GenerateCT against cutting-edge methods, demonstrating its superiority across all key metrics. Importantly, we evaluated GenerateCT's clinical applications in a multi-abnormality classification task. First, we established a baseline by training a multi-abnormality classifier on our real dataset. To further assess the model's generalization to external data and performance with unseen prompts in a zero-shot scenario, we employed an external set to train the classifier, setting an additional benchmark. We conducted two experiments in which we doubled the training datasets by synthesizing an equal number of volumes for each set using GenerateCT. The first experiment demonstrated an 11% improvement in the AP score when training the classifier jointly on real and generated volumes. The second experiment showed a 7% improvement when training on both real and generated volumes based on unseen prompts. Moreover, GenerateCT enables the scaling of synthetic training datasets to arbitrary sizes. As an example, we generated 100,000 3D CTs, fivefold the number in our real set, and trained the classifier exclusively on these synthetic CTs. Impressively, this classifier surpassed the performance of the one trained on all available real data by a margin of 8%. Last, domain experts evaluated the generated volumes, confirming a high degree of alignment with the text prompt. Access our code, model weights, training data, and generated data at //github.com/ibrahimethemhamamci/GenerateCT
Recent advances in Deep Neural Networks (DNNs) and sensor technologies are enabling autonomous driving systems (ADSs) with an ever-increasing level of autonomy. However, assessing their dependability remains a critical concern. State-of-the-art ADS testing approaches modify the controllable attributes of a simulated driving environment until the ADS misbehaves. In such approaches, environment instances in which the ADS is successful are discarded, despite the possibility that they could contain hidden driving conditions in which the ADS may misbehave. In this paper, we present GENBO (GENerator of BOundary state pairs), a novel test generator for ADS testing. GENBO mutates the driving conditions of the ego vehicle (position, velocity and orientation), collected in a failure-free environment instance, and efficiently generates challenging driving conditions at the behavior boundary (i.e., where the model starts to misbehave) in the same environment instance. We use such boundary conditions to augment the initial training dataset and retrain the DNN model under test. Our evaluation results show that the retrained model has, on average, up to 3x higher success rate on a separate set of evaluation tracks with respect to the original DNN model.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.