We extend a certain type of identities on sums of $I$-Bessel functions on lattices, previously given by G. Chinta, J. Jorgenson, A Karlsson and M. Neuhauser. Moreover we prove that, with continuum limit, the transformation formulas of theta functions such as the Dedekind eta function can be given by $I$-Bessel lattice sum identities with characters. We consider analogues of theta functions of lattices coming from linear codes and show that sums of $I$-Bessel functions defined by linear codes can be expressed by complete weight enumerators. We also prove that $I$-Bessel lattice sums appear as solutions of heat equations on general lattices. As a further application, we obtain an explicit solution of the heat equation on $\mathbb{Z}^n$ whose initial condition is given by a linear code.
This overview is devoted to splitting methods, a class of numerical integrators intended for differential equations that can be subdivided into different problems easier to solve than the original system. Closely connected with this class of integrators are composition methods, in which one or several low-order schemes are composed to construct higher-order numerical approximations to the exact solution. We analyze in detail the order conditions that have to be satisfied by these classes of methods to achieve a given order, and provide some insight about their qualitative properties in connection with geometric numerical integration and the treatment of highly oscillatory problems. Since splitting methods have received considerable attention in the realm of partial differential equations, we also cover this subject in the present survey, with special attention to parabolic equations and their problems. An exhaustive list of methods of different orders is collected and tested on simple examples. Finally, some applications of splitting methods in different areas, ranging from celestial mechanics to statistics, are also provided.
We study the problem of estimating a function $T$ given independent samples from a distribution $P$ and from the pushforward distribution $T_\sharp P$. This setting is motivated by applications in the sciences, where $T$ represents the evolution of a physical system over time, and in machine learning, where, for example, $T$ may represent a transformation learned by a deep neural network trained for a generative modeling task. To ensure identifiability, we assume that $T = \nabla \varphi_0$ is the gradient of a convex function, in which case $T$ is known as an \emph{optimal transport map}. Prior work has studied the estimation of $T$ under the assumption that it lies in a H\"older class, but general theory is lacking. We present a unified methodology for obtaining rates of estimation of optimal transport maps in general function spaces. Our assumptions are significantly weaker than those appearing in the literature: we require only that the source measure $P$ satisfy a Poincar\'e inequality and that the optimal map be the gradient of a smooth convex function that lies in a space whose metric entropy can be controlled. As a special case, we recover known estimation rates for H\"older transport maps, but also obtain nearly sharp results in many settings not covered by prior work. For example, we provide the first statistical rates of estimation when $P$ is the normal distribution and the transport map is given by an infinite-width shallow neural network.
Pseudo-Hamiltonian neural networks (PHNN) were recently introduced for learning dynamical systems that can be modelled by ordinary differential equations. In this paper, we extend the method to partial differential equations. The resulting model is comprised of up to three neural networks, modelling terms representing conservation, dissipation and external forces, and discrete convolution operators that can either be learned or be given as input. We demonstrate numerically the superior performance of PHNN compared to a baseline model that models the full dynamics by a single neural network. Moreover, since the PHNN model consists of three parts with different physical interpretations, these can be studied separately to gain insight into the system, and the learned model is applicable also if external forces are removed or changed.
The causal inference literature frequently focuses on estimating the mean of the potential outcome, whereas the quantiles of the potential outcome may carry important additional information. We propose a universal approach, based on the inverse estimating equations, to generalize a wide class of causal inference solutions from estimating the mean of the potential outcome to its quantiles. We assume that an identifying moment function is available to identify the mean of the threshold-transformed potential outcome, based on which a convenient construction of the estimating equation of quantiles of potential outcome is proposed. In addition, we also give a general construction of the efficient influence functions of the mean and quantiles of potential outcomes, and identify their connection. We motivate estimators for the quantile estimands with the efficient influence function, and develop their asymptotic properties when either parametric models or data-adaptive machine learners are used to estimate the nuisance functions. A broad implication of our results is that one can rework the existing result for mean causal estimands to facilitate causal inference on quantiles, rather than starting from scratch. Our results are illustrated by several examples.
We explore new interactions between finite model theory and a number of classical streams of universal algebra and semigroup theory. A key result is an example of a finite algebra whose variety is not finitely axiomatisable in first order logic, but which has first order definable finite membership problem. This algebra witnesses the simultaneous failure of the {\L}os-Tarski Theorem, the SP-preservation theorem and Birkhoff's HSP-preservation theorem at the finite level as well as providing a negative solution to a first order formulation of the long-standing Eilenberg Sch\"utzenberger problem. The example also shows that a pseudovariety without any finite pseudo-identity basis may be finitely axiomatisable in first order logic. Other results include the undecidability of deciding first order definability of the pseudovariety of a finite algebra and a mapping from any fixed template constraint satisfaction problem to a first order equivalent variety membership problem, thereby providing examples of variety membership problems complete in each of the classes $\texttt{L}$, $\texttt{NL}$, $\texttt{Mod}_p(\texttt{L})$, $\texttt{P}$, and infinitely many others (depending on complexity-theoretic assumptions).
We consider the gradient descent flow widely used for the minimization of the $\mathcal{L}^2$ cost function in Deep Learning networks, and introduce two modified versions; one adapted for the overparametrized setting, and the other for the underparametrized setting. Both have a clear and natural invariant geometric meaning, taking into account the pullback vector bundle structure in the overparametrized, and the pushforward vector bundle structure in the underparametrized setting. In the overparametrized case, we prove that, provided that a rank condition holds, all orbits of the modified gradient descent drive the $\mathcal{L}^2$ cost to its global minimum at a uniform exponential convergence rate; one thereby obtains an a priori stopping time for any prescribed proximity to the global minimum. We point out relations of the latter to sub-Riemannian geometry.
We continue to investigate the $k$ nearest neighbour learning rule in separable metric spaces. Thanks to the results of C\'erou and Guyader (2006) and Preiss (1983), this rule is known to be universally consistent in every metric space $X$ that is sigma-finite dimensional in the sense of Nagata. Here we show that the rule is strongly universally consistent in such spaces in the absence of ties. Under the tie-breaking strategy applied by Devroye, Gy\"{o}rfi, Krzy\.{z}ak, and Lugosi (1994) in the Euclidean setting, we manage to show the strong universal consistency in non-Archimedian metric spaces (that is, those of Nagata dimension zero). Combining the theorem of C\'erou and Guyader with results of Assouad and Quentin de Gromard (2006), one deduces that the $k$-NN rule is universally consistent in metric spaces having finite dimension in the sense of de Groot. In particular, the $k$-NN rule is universally consistent in the Heisenberg group which is not sigma-finite dimensional in the sense of Nagata as follows from an example independently constructed by Kor\'anyi and Reimann (1995) and Sawyer and Wheeden (1992).
For a matrix $A$ which satisfies Crouzeix's conjecture, we construct several classes of matrices from $A$ for which the conjecture will also hold. We discover a new link between cyclicity and Crouzeix's conjecture, which shows that Crouzeix's Conjecture holds in full generality if and only if it holds for the differentiation operator on a class of analytic functions. We pose several open questions, which if proved, will prove Crouzeix's conjecture. We also begin an investigation into Crouzeix's conjecture for symmetric matrices and in the case of $3 \times 3$ matrices, we show Crouzeix's conjecture holds for symmetric matrices if and only if it holds for analytic truncated Toeplitz operators.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
We construct the first rigorously justified probabilistic algorithm for recovering the solution operator of a hyperbolic partial differential equation (PDE) in two variables from input-output training pairs. The primary challenge of recovering the solution operator of hyperbolic PDEs is the presence of characteristics, along which the associated Green's function is discontinuous. Therefore, a central component of our algorithm is a rank detection scheme that identifies the approximate location of the characteristics. By combining the randomized singular value decomposition with an adaptive hierarchical partition of the domain, we construct an approximant to the solution operator using $O(\Psi_\epsilon^{-1}\epsilon^{-7}\log(\Xi_\epsilon^{-1}\epsilon^{-1}))$ input-output pairs with relative error $O(\Xi_\epsilon^{-1}\epsilon)$ in the operator norm as $\epsilon\to0$, with high probability. Here, $\Psi_\epsilon$ represents the existence of degenerate singular values of the solution operator, and $\Xi_\epsilon$ measures the quality of the training data. Our assumptions on the regularity of the coefficients of the hyperbolic PDE are relatively weak given that hyperbolic PDEs do not have the ``instantaneous smoothing effect'' of elliptic and parabolic PDEs, and our recovery rate improves as the regularity of the coefficients increases.