亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In conventional machine learning (ML) approaches applied to electroencephalography (EEG), this is often a limited focus, isolating specific brain activities occurring across disparate temporal scales (from transient spikes in milliseconds to seizures lasting minutes) and spatial scales (from localized high-frequency oscillations to global sleep activity). This siloed approach limits the development EEG ML models that exhibit multi-scale electrophysiological understanding and classification capabilities. Moreover, typical ML EEG approaches utilize black-box approaches, limiting their interpretability and trustworthiness in clinical contexts. Thus, we propose EEG-GPT, a unifying approach to EEG classification that leverages advances in large language models (LLM). EEG-GPT achieves excellent performance comparable to current state-of-the-art deep learning methods in classifying normal from abnormal EEG in a few-shot learning paradigm utilizing only 2% of training data. Furthermore, it offers the distinct advantages of providing intermediate reasoning steps and coordinating specialist EEG tools across multiple scales in its operation, offering transparent and interpretable step-by-step verification, thereby promoting trustworthiness in clinical contexts.

相關內容

大語言模型是基于海量文本數據訓練的深度學習模型。它不僅能夠生成自然語言文本,還能夠深入理解文本含義,處理各種自然語言任務,如文本摘要、問答、翻譯等。2023年,大語言模型及其在人工智能領域的應用已成為全球科技研究的熱點,其在規模上的增長尤為引人注目,參數量已從最初的十幾億躍升到如今的一萬億。參數量的提升使得模型能夠更加精細地捕捉人類語言微妙之處,更加深入地理解人類語言的復雜性。在過去的一年里,大語言模型在吸納新知識、分解復雜任務以及圖文對齊等多方面都有顯著提升。隨著技術的不斷成熟,它將不斷拓展其應用范圍,為人類提供更加智能化和個性化的服務,進一步改善人們的生活和生產方式。

A critical bottleneck limiting imitation learning in robotics is the lack of data. This problem is more severe in mobile manipulation, where collecting demonstrations is harder than in stationary manipulation due to the lack of available and easy-to-use teleoperation interfaces. In this work, we demonstrate TeleMoMa, a general and modular interface for whole-body teleoperation of mobile manipulators. TeleMoMa unifies multiple human interfaces including RGB and depth cameras, virtual reality controllers, keyboard, joysticks, etc., and any combination thereof. In its more accessible version, TeleMoMa works using simply vision (e.g., an RGB-D camera), lowering the entry bar for humans to provide mobile manipulation demonstrations. We demonstrate the versatility of TeleMoMa by teleoperating several existing mobile manipulators - PAL Tiago++, Toyota HSR, and Fetch - in simulation and the real world. We demonstrate the quality of the demonstrations collected with TeleMoMa by training imitation learning policies for mobile manipulation tasks involving synchronized whole-body motion. Finally, we also show that TeleMoMa's teleoperation channel enables teleoperation on site, looking at the robot, or remote, sending commands and observations through a computer network, and perform user studies to evaluate how easy it is for novice users to learn to collect demonstrations with different combinations of human interfaces enabled by our system. We hope TeleMoMa becomes a helpful tool for the community enabling researchers to collect whole-body mobile manipulation demonstrations. For more information and video results, //robin-lab.cs.utexas.edu/telemoma-web.

Despite the effectiveness of data selection for large language models (LLMs) during pretraining and instruction fine-tuning phases, improving data efficiency in supervised fine-tuning (SFT) for specialized domains poses significant challenges due to the complexity of fine-tuning data. To bridge this gap, we introduce an effective and scalable data selection method for SFT, SmallToLarge (S2L), which leverages training trajectories from small models to guide the data selection for larger models. We demonstrate through extensive experiments that S2L significantly improves data efficiency in SFT for mathematical problem-solving, reducing the training data to just 11% of the original MathInstruct dataset (Yue et al., 2023) to match full dataset performance while outperforming state-of-the-art data selection algorithms by an average of 4.7% across 6 in- and out-domain evaluation datasets. Remarkably, selecting only 50K data for SFT, S2L achieves a 32.7% accuracy on the most challenging MATH (Hendrycks et al., 2021) benchmark, improving Phi-2 (Li et al., 2023b) by 16.6%. In clinical text summarization on the MIMIC-III dataset (Johnson et al., 2016), S2L again outperforms training on the full dataset using only 50% of the data. Notably, S2L can perform data selection using a reference model 40x smaller than the target model, proportionally reducing the cost of data selection.

Large language models (LLMs) demonstrate exceptional performance in numerous tasks but still heavily rely on knowledge stored in their parameters. Moreover, updating this knowledge incurs high training costs. Retrieval-augmented generation (RAG) methods address this issue by integrating external knowledge. The model can answer questions it couldn't previously by retrieving knowledge relevant to the query. This approach improves performance in certain scenarios for specific tasks. However, if irrelevant texts are retrieved, it may impair model performance. In this paper, we propose Retrieval Augmented Iterative Self-Feedback (RA-ISF), a framework that iteratively decomposes tasks and processes them in three submodules to enhance the model's problem-solving capabilities. Experiments show that our method outperforms existing benchmarks, performing well on models like GPT3.5, Llama2, significantly enhancing factual reasoning capabilities and reducing hallucinations.

Parameter-efficient transfer learning (PETL), i.e., fine-tuning a small portion of parameters, is an effective strategy for adapting pre-trained models to downstream domains. To further reduce the memory demand, recent PETL works focus on the more valuable memory-efficient characteristic. In this paper, we argue that the scalability, adaptability, and generalizability of state-of-the-art methods are hindered by structural dependency and pertinency on specific pre-trained backbones. To this end, we propose a new memory-efficient PETL strategy, Universal Parallel Tuning (UniPT), to mitigate these weaknesses. Specifically, we facilitate the transfer process via a lightweight and learnable parallel network, which consists of: 1) A parallel interaction module that decouples the sequential connections and processes the intermediate activations detachedly from the pre-trained network. 2) A confidence aggregation module that learns optimal strategies adaptively for integrating cross-layer features. We evaluate UniPT with different backbones (e.g., T5, VSE$\infty$, CLIP4Clip, Clip-ViL, and MDETR) on various vision-and-language and pure NLP tasks. Extensive ablations on 18 datasets have validated that UniPT can not only dramatically reduce memory consumption and outperform the best competitor, but also achieve competitive performance over other plain PETL methods with lower training memory overhead. Our code is publicly available at: //github.com/Paranioar/UniPT.

Despite the rapid development of large language models (LLMs) for the Korean language, there remains an obvious lack of benchmark datasets that test the requisite Korean cultural and linguistic knowledge. Because many existing Korean benchmark datasets are derived from the English counterparts through translation, they often overlook the different cultural contexts. For the few benchmark datasets that are sourced from Korean data capturing cultural knowledge, only narrow tasks such as bias and hate speech detection are offered. To address this gap, we introduce a benchmark of Cultural and Linguistic Intelligence in Korean (CLIcK), a dataset comprising 1,995 QA pairs. CLIcK sources its data from official Korean exams and textbooks, partitioning the questions into eleven categories under the two main categories of language and culture. For each instance in CLIcK, we provide fine-grained annotation of which cultural and linguistic knowledge is required to answer the question correctly. Using CLIcK, we test 13 language models to assess their performance. Our evaluation uncovers insights into their performances across the categories, as well as the diverse factors affecting their comprehension. CLIcK offers the first large-scale comprehensive Korean-centric analysis of LLMs' proficiency in Korean culture and language.

This work investigates large language models (LLMs) as teachable agents for learning by teaching (LBT). LBT with teachable agents helps learners identify knowledge gaps and discover new knowledge. However, teachable agents require expensive programming of subject-specific knowledge. While LLMs as teachable agents can reduce the cost, LLMs' expansive knowledge as tutees discourages learners from teaching. We propose a prompting pipeline that restrains LLMs' knowledge and makes them initiate "why" and "how" questions for effective knowledge-building. We combined these techniques into TeachYou, an LBT environment for algorithm learning, and AlgoBo, an LLM-based tutee chatbot that can simulate misconceptions and unawareness prescribed in its knowledge state. Our technical evaluation confirmed that our prompting pipeline can effectively configure AlgoBo's problem-solving performance. Through a between-subject study with 40 algorithm novices, we also observed that AlgoBo's questions led to knowledge-dense conversations (effect size=0.71). Lastly, we discuss design implications, cost-efficiency, and personalization of LLM-based teachable agents.

Quantum Relative Entropy (QRE) programming is a recently popular and challenging class of convex optimization problems with significant applications in quantum computing and quantum information theory. We are interested in modern interior point (IP) methods based on optimal self-concordant barriers for the QRE cone. A range of theoretical and numerical challenges associated with such barrier functions and the QRE cones have hindered the scalability of IP methods. To address these challenges, we propose a series of numerical and linear algebraic techniques and heuristics aimed at enhancing the efficiency of gradient and Hessian computations for the self-concordant barrier function, solving linear systems, and performing matrix-vector products. We also introduce and deliberate about some interesting concepts related to QRE such as symmetric quantum relative entropy (SQRE). We also introduce a two-phase method for performing facial reduction that can significantly improve the performance of QRE programming. Our new techniques have been implemented in the latest version (DDS 2.2) of the software package DDS. In addition to handling QRE constraints, DDS accepts any combination of several other conic and non-conic convex constraints. Our comprehensive numerical experiments encompass several parts including 1) a comparison of DDS 2.2 with Hypatia for the nearest correlation matrix problem, 2) using DDS for combining QRE constraints with various other constraint types, and 3) calculating the key rate for quantum key distribution (QKD) channels and presenting results for several QKD protocols.

As technological advancements continue to expand the capabilities of multi unmanned-aerial-vehicle systems (mUAV), human operators face challenges in scalability and efficiency due to the complex cognitive load and operations associated with motion adjustments and team coordination. Such cognitive demands limit the feasible size of mUAV teams and necessitate extensive operator training, impeding broader adoption. This paper developed a Hand Gesture Based Interactive Control (HGIC), a novel interface system that utilize computer vision techniques to intuitively translate hand gestures into modular commands for robot teaming. Through learning control models, these commands enable efficient and scalable mUAV motion control and adjustments. HGIC eliminates the need for specialized hardware and offers two key benefits: 1) Minimal training requirements through natural gestures; and 2) Enhanced scalability and efficiency via adaptable commands. By reducing the cognitive burden on operators, HGIC opens the door for more effective large-scale mUAV applications in complex, dynamic, and uncertain scenarios. HGIC will be open-sourced after the paper being published online for the research community, aiming to drive forward innovations in human-mUAV interactions.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

北京阿比特科技有限公司