亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the mid 80s, Lichtenstein, Pnueli, and Zuck showed that every formula of Past LTL (the extension of Linear Temporal Logic with past operators) is equivalent to a conjunction of formulas of the form $\mathbf{G}\mathbf{F} \varphi \vee \mathbf{F}\mathbf{G} \psi$, where $\varphi$ and $\psi$ contain only past operators. Some years later, Chang, Manna, and Pnueli derived a similar normal form for LTL. Both normalization procedures have a non-elementary worst-case blow-up, and follow an involved path from formulas to counter-free automata to star-free regular expressions and back to formulas. In 2020, Sickert and Esparza presented a direct and purely syntactic normalization procedure for LTL yielding a normal form similar to the one by Chang, Manna, and Pnueli, with a single exponential blow-up, and applied it to the problem of constructing a succinct deterministic $\omega$-automaton for a given formula. However, their procedure had exponential time complexity in the best case. In particular, it does not perform better for formulas that are almost in normal form. In this paper we present an alternative normalization procedure based on a simple set of rewrite rules.

相關內容

Classical analysis of convex and non-convex optimization methods often requires the Lipshitzness of the gradient, which limits the analysis to functions bounded by quadratics. Recent work relaxed this requirement to a non-uniform smoothness condition with the Hessian norm bounded by an affine function of the gradient norm, and proved convergence in the non-convex setting via gradient clipping, assuming bounded noise. In this paper, we further generalize this non-uniform smoothness condition and develop a simple, yet powerful analysis technique that bounds the gradients along the trajectory, thereby leading to stronger results for both convex and non-convex optimization problems. In particular, we obtain the classical convergence rates for (stochastic) gradient descent and Nesterov's accelerated gradient method in the convex and/or non-convex setting under this general smoothness condition. The new analysis approach does not require gradient clipping and allows heavy-tailed noise with bounded variance in the stochastic setting.

Temporal logic is a concise way of specifying complex tasks. But motion planning to achieve temporal logic specifications is difficult, and existing methods struggle to scale to complex specifications and high-dimensional system dynamics. In this paper, we cast Linear Temporal Logic (LTL) motion planning as a shortest path problem in a Graph of Convex Sets (GCS) and solve it with convex optimization. This approach brings together the best of modern optimization-based temporal logic planners and older automata-theoretic methods, addressing the limitations of each: we avoid clipping and passthrough by representing paths with continuous Bezier curves; computational complexity is polynomial (not exponential) in the number of sample points; global optimality can be certified (though it is not guaranteed); soundness and probabilistic completeness are guaranteed under mild assumptions; and most importantly, the method scales to complex specifications and high-dimensional systems, including a 30-DoF humanoid. Open-source code is available at //github.com/vincekurtz/ltl_gcs.

In this paper, we discuss reduced order modelling approaches to bifurcating systems arising from continuum mechanics benchmarks. The investigation of the beam's deflection is a relevant topic of investigation with fundamental implications on their design for structural analysis and health. When the beams are exposed to external forces, their equilibrium state can undergo to a sudden variation. This happens when a compression, acting along the axial boundaries, exceeds a certain critical value. Linear elasticity models are not complex enough to capture the so-called beam's buckling, and nonlinear constitutive relations, as the hyperelastic laws, are required to investigate this behavior, whose mathematical counterpart is represented by bifurcating phenomena. The numerical analysis of the bifurcating modes and the post-buckling behavior, is usually unaffordable by means of standard high-fidelity techniques such (as the Finite Element method) and the efficiency of Reduced Order Models (ROMs), e.g.\ based on Proper Orthogonal Decomposition (POD), are necessary to obtain consistent speed-up in the reconstruction of the bifurcation diagram. The aim of this work is to provide insights regarding the application of POD-based ROMs for buckling phenomena occurring for 2-D and 3-D beams governed by different constitutive relations. The benchmarks will involve multi-parametric settings with geometrically parametrized domains, where the buckling's location depends on the material and geometrical properties induced by the parameter. Finally, we exploit the acquired notions from these toy problems, to simulate a real case scenario coming from the Norwegian petroleum industry.

We initiate the mathematical study of replicability as an algorithmic property in the context of reinforcement learning (RL). We focus on the fundamental setting of discounted tabular MDPs with access to a generative model. Inspired by Impagliazzo et al. [2022], we say that an RL algorithm is replicable if, with high probability, it outputs the exact same policy after two executions on i.i.d. samples drawn from the generator when its internal randomness is the same. We first provide an efficient $\rho$-replicable algorithm for $(\varepsilon, \delta)$-optimal policy estimation with sample and time complexity $\widetilde O\left(\frac{N^3\cdot\log(1/\delta)}{(1-\gamma)^5\cdot\varepsilon^2\cdot\rho^2}\right)$, where $N$ is the number of state-action pairs. Next, for the subclass of deterministic algorithms, we provide a lower bound of order $\Omega\left(\frac{N^3}{(1-\gamma)^3\cdot\varepsilon^2\cdot\rho^2}\right)$. Then, we study a relaxed version of replicability proposed by Kalavasis et al. [2023] called TV indistinguishability. We design a computationally efficient TV indistinguishable algorithm for policy estimation whose sample complexity is $\widetilde O\left(\frac{N^2\cdot\log(1/\delta)}{(1-\gamma)^5\cdot\varepsilon^2\cdot\rho^2}\right)$. At the cost of $\exp(N)$ running time, we transform these TV indistinguishable algorithms to $\rho$-replicable ones without increasing their sample complexity. Finally, we introduce the notion of approximate-replicability where we only require that two outputted policies are close under an appropriate statistical divergence (e.g., Renyi) and show an improved sample complexity of $\widetilde O\left(\frac{N\cdot\log(1/\delta)}{(1-\gamma)^5\cdot\varepsilon^2\cdot\rho^2}\right)$.

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: //www.cs.columbia.edu/cg/INSR-PDE/

The important phenomenon of "stickiness" of chaotic orbits in low dimensional dynamical systems has been investigated for several decades, in view of its applications to various areas of physics, such as classical and statistical mechanics, celestial mechanics and accelerator dynamics. Most of the work to date has focused on two-degree of freedom Hamiltonian models often represented by two-dimensional (2D) area preserving maps. In this paper, we extend earlier results using a 4-dimensional extension of the 2D MacMillan map, and show that a symplectic model of two coupled MacMillan maps also exhibits stickiness phenomena in limited regions of phase space. To this end, we employ probability distributions in the sense of the Central Limit Theorem to demonstrate that, as in the 2D case, sticky regions near the origin are also characterized by "weak" chaos and Tsallis entropy, in sharp contrast to the "strong" chaos that extends over much wider domains and is described by Boltzmann Gibbs statistics. Remarkably, similar stickiness phenomena have been observed in higher dimensional Hamiltonian systems around unstable simple periodic orbits at various values of the total energy of the system.

Most state-of-the-art machine learning techniques revolve around the optimisation of loss functions. Defining appropriate loss functions is therefore critical to successfully solving problems in this field. We present a survey of the most commonly used loss functions for a wide range of different applications, divided into classification, regression, ranking, sample generation and energy based modelling. Overall, we introduce 33 different loss functions and we organise them into an intuitive taxonomy. Each loss function is given a theoretical backing and we describe where it is best used. This survey aims to provide a reference of the most essential loss functions for both beginner and advanced machine learning practitioners.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司