The communication cost of distributed optimization algorithms is a major bottleneck in their scalability. This work considers a parameter-server setting in which the worker is constrained to communicate information to the server using only $R$ bits per dimension. We show that $\mathbf{democratic}$ $\mathbf{embeddings}$ from random matrix theory are significantly useful for designing efficient and optimal vector quantizers that respect this bit budget. The resulting polynomial complexity source coding schemes are used to design distributed optimization algorithms with convergence rates matching the minimax optimal lower bounds for (i) Smooth and Strongly-Convex objectives with access to an Exact Gradient oracle, as well as (ii) General Convex and Non-Smooth objectives with access to a Noisy Subgradient oracle. We further propose a relaxation of this coding scheme which is nearly minimax optimal. Numerical simulations validate our theoretical claims.
In this paper, we investigate the performance of two first-order optimization algorithms, obtained from forward Euler discretization of finite-time optimization flows. These flows are the rescaled-gradient flow (RGF) and the signed-gradient flow (SGF), and consist of non-Lipscthiz or discontinuous dynamical systems that converge locally in finite time to the minima of gradient-dominated functions. We propose an Euler discretization for these first-order finite-time flows, and provide convergence guarantees, in the deterministic and the stochastic setting. We then apply the proposed algorithms to academic examples, as well as deep neural networks training, where we empirically test their performances on the SVHN dataset. Our results show that our schemes demonstrate faster convergences against standard optimization alternatives.
In this paper, we propose a monotone approximation scheme for a class of fully nonlinear partial integro-differential equations (PIDEs) which characterize the nonlinear $\alpha$-stable L\'{e}vy processes under sublinear expectation space with $\alpha \in(1,2)$. Two main results are obtained: (i) the error bounds for the monotone approximation scheme of nonlinear PIDEs, and (ii) the convergence rates of a generalized central limit theorem of Bayraktar-Munk for $\alpha$-stable random variables under sublinear expectation. Our proofs use and extend techniques introduced by Krylov and Barles-Jakobsen.
This paper studies the problem of federated learning (FL) in the absence of a trustworthy server/clients. In this setting, each client needs to ensure the privacy of its own data without relying on the server or other clients. We study local differential privacy (LDP) and provide tight upper and lower bounds that establish the minimax optimal rates (up to logarithms) for LDP convex/strongly convex federated stochastic optimization. Our rates match the optimal statistical rates in certain practical parameter regimes ("privacy for free"). Second, we develop a novel time-varying noisy SGD algorithm, leading to the first non-trivial LDP risk bounds for FL with non-i.i.d. clients. Third, we consider the special case where each client's loss function is empirical and develop an accelerated LDP FL algorithm to improve communication complexity compared to existing works. We also provide matching lower bounds, establishing the optimality of our algorithm for convex/strongly convex settings. Fourth, with a secure shuffler to anonymize client reports (but without a trusted server), our algorithm attains the optimal central DP rates for stochastic convex/strongly convex optimization, thereby achieving optimality in the local and central models simultaneously. Our upper bounds quantify the role of network communication reliability in performance.
Federated Learning (FL) refers to distributed protocols that avoid direct raw data exchange among the participating devices while training for a common learning task. This way, FL can potentially reduce the information on the local data sets that is leaked via communications. In order to provide formal privacy guarantees, however, it is generally necessary to put in place additional masking mechanisms. When FL is implemented in wireless systems via uncoded transmission, the channel noise can directly act as a privacy-inducing mechanism. This paper demonstrates that, as long as the privacy constraint level, measured via differential privacy (DP), is below a threshold that decreases with the signal-to-noise ratio (SNR), uncoded transmission achieves privacy "for free", i.e., without affecting the learning performance. More generally, this work studies adaptive power allocation (PA) for decentralized gradient descent in wireless FL with the aim of minimizing the learning optimality gap under privacy and power constraints. Both orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) transmission with "over-the-air-computing" are studied, and solutions are obtained in closed form for an offline optimization setting. Furthermore, heuristic online methods are proposed that leverage iterative one-step-ahead optimization. The importance of dynamic PA and the potential benefits of NOMA versus OMA are demonstrated through extensive simulations.
In vertical federated learning (FL), the features of a data sample are distributed across multiple agents. As such, inter-agent collaboration can be beneficial not only during the learning phase, as is the case for standard horizontal FL, but also during the inference phase. A fundamental theoretical question in this setting is how to quantify the cost, or performance loss, of decentralization for learning and/or inference. In this paper, we consider general supervised learning problems with any number of agents, and provide a novel information-theoretic quantification of the cost of decentralization in the presence of privacy constraints on inter-agent communication within a Bayesian framework. The cost of decentralization for learning and/or inference is shown to be quantified in terms of conditional mutual information terms involving features and label variables.
We provide a control-theoretic perspective on optimal tensor algorithms for minimizing a convex function in a finite-dimensional Euclidean space. Given a function $\Phi: \mathbb{R}^d \rightarrow \mathbb{R}$ that is convex and twice continuously differentiable, we study a closed-loop control system that is governed by the operators $\nabla \Phi$ and $\nabla^2 \Phi$ together with a feedback control law $\lambda(\cdot)$ satisfying the algebraic equation $(\lambda(t))^p\|\nabla\Phi(x(t))\|^{p-1} = \theta$ for some $\theta \in (0, 1)$. Our first contribution is to prove the existence and uniqueness of a local solution to this system via the Banach fixed-point theorem. We present a simple yet nontrivial Lyapunov function that allows us to establish the existence and uniqueness of a global solution under certain regularity conditions and analyze the convergence properties of trajectories. The rate of convergence is $O(1/t^{(3p+1)/2})$ in terms of objective function gap and $O(1/t^{3p})$ in terms of squared gradient norm. Our second contribution is to provide two algorithmic frameworks obtained from discretization of our continuous-time system, one of which generalizes the large-step A-HPE framework and the other of which leads to a new optimal $p$-th order tensor algorithm. While our discrete-time analysis can be seen as a simplification and generalization of~\citet{Monteiro-2013-Accelerated}, it is largely motivated by the aforementioned continuous-time analysis, demonstrating the fundamental role that the feedback control plays in optimal acceleration and the clear advantage that the continuous-time perspective brings to algorithmic design. A highlight of our analysis is that we show that all of the $p$-th order optimal tensor algorithms that we discuss minimize the squared gradient norm at a rate of $O(k^{-3p})$, which complements the recent analysis.
The identification capacity is developed without randomization at neither the encoder nor the decoder. In particular, full characterization is established for the deterministic identification (DI) capacity for the Gaussian channel and for the general discrete memoryless channel (DMC) with and without constraints. Originally, Ahlswede and Dueck established the identification capacity with local randomness given at the encoder, resulting in a double exponential number of messages in the block length. In the deterministic setup, the number of messages scales exponentially, as in Shannon's transmission paradigm, but the achievable identification rates can be significantly higher than those of the transmission rates. Ahlswede and Dueck further stated a capacity result for the deterministic setting of a DMC, but did not provide an explicit proof. In this paper, a detailed proof is given for both the Gaussian channel and the general DMC. The DI capacity of a Gaussian channel is infinite regardless of the noise.
Asynchronous momentum stochastic gradient descent algorithms (Async-MSGD) is one of the most popular algorithms in distributed machine learning. However, its convergence properties for these complicated nonconvex problems is still largely unknown, because of the current technical limit. Therefore, in this paper, we propose to analyze the algorithm through a simpler but nontrivial nonconvex problem - streaming PCA, which helps us to understand Aync-MSGD better even for more general problems. Specifically, we establish the asymptotic rate of convergence of Async-MSGD for streaming PCA by diffusion approximation. Our results indicate a fundamental tradeoff between asynchrony and momentum: To ensure convergence and acceleration through asynchrony, we have to reduce the momentum (compared with Sync-MSGD). To the best of our knowledge, this is the first theoretical attempt on understanding Async-MSGD for distributed nonconvex stochastic optimization. Numerical experiments on both streaming PCA and training deep neural networks are provided to support our findings for Async-MSGD.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.
In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.