Semi-simplicial and semi-cubical sets are commonly defined as presheaves over respectively, the semi-simplex or semi-cube category. Homotopy Type Theory then popularized an alternative definition, where the set of n-simplices or n-cubes are instead regrouped into the families of the fibers over their faces, leading to a characterization we call indexed. Moreover, it is known that semi-simplicial and semi-cubical sets are related to iterated Reynolds parametricity, respectively in its unary and binary variants. We exploit this correspondence to develop an original uniform indexed definition of both augmented semi-simplicial and semi-cubical sets, and fully formalize it in Coq.
A discretization method with non-matching grids is proposed for the coupled Stokes-Darcy problem that uses a mortar variable at the interface to couple the marker and cell (MAC) method in the Stokes domain with the Raviart-Thomas mixed finite element pair in the Darcy domain. Due to this choice, the method conserves linear momentum and mass locally in the Stokes domain and exhibits local mass conservation in the Darcy domain. The MAC scheme is reformulated as a mixed finite element method on a staggered grid, which allows for the proposed scheme to be analyzed as a mortar mixed finite element method. We show that the discrete system is well-posed and derive a priori error estimates that indicate first order convergence in all variables. The system can be reduced to an interface problem concerning only the mortar variables, leading to a non-overlapping domain decomposition method. Numerical examples are presented to illustrate the theoretical results and the applicability of the method.
We consider the classical problems of interpolating a polynomial given a black box for evaluation, and of multiplying two polynomials, in the setting where the bit-lengths of the coefficients may vary widely, so-called unbalanced polynomials. Writing s for the total bit-length and D for the degree, our new algorithms have expected running time $\tilde{O}(s \log D)$, whereas previous methods for (resp.) dense or sparse arithmetic have at least $\tilde{O}(sD)$ or $\tilde{O}(s^2)$ bit complexity.
We introduce Optimistix: a nonlinear optimisation library built in JAX and Equinox. Optimistix introduces a novel, modular approach for its minimisers and least-squares solvers. This modularity relies on new practical abstractions for optimisation which we call search and descent, and which generalise classical notions of line search, trust-region, and learning-rate algorithms. It provides high-level APIs and solvers for minimisation, nonlinear least-squares, root-finding, and fixed-point iteration. Optimistix is available at //github.com/patrick-kidger/optimistix.
The broad class of multivariate unified skew-normal (SUN) distributions has been recently shown to possess fundamental conjugacy properties. When used as priors for the vector of parameters in general probit, tobit, and multinomial probit models, these distributions yield posteriors that still belong to the SUN family. Although such a core result has led to important advancements in Bayesian inference and computation, its applicability beyond likelihoods associated with fully-observed, discretized, or censored realizations from multivariate Gaussian models remains yet unexplored. This article covers such an important gap by proving that the wider family of multivariate unified skew-elliptical (SUE) distributions, which extends SUNs to more general perturbations of elliptical densities, guarantees conjugacy for broader classes of models, beyond those relying on fully-observed, discretized or censored Gaussians. Such a result leverages the closure under linear combinations, conditioning and marginalization of SUE to prove that such a family is conjugate to the likelihood induced by general multivariate regression models for fully-observed, censored or dichotomized realizations from skew-elliptical distributions. This advancement substantially enlarges the set of models that enable conjugate Bayesian inference to general formulations arising from elliptical and skew-elliptical families, including the multivariate Student's t and skew-t, among others.
Sine-skewed circular distributions are identifiable and have easily-computable trigonometric moments and a simple random number generation algorithm, whereas they are known to have relatively low levels of asymmetry. This study proposes a new family of circular distributions that can be skewed more significantly than that of existing models. It is shown that a subfamily of the proposed distributions is identifiable with respect to parameters and all distributions in the subfamily have explicit trigonometric moments and a simple random number generation algorithm. The maximum likelihood estimation for model parameters is considered and its finite sample performances are investigated by numerical simulations. Some real data applications are illustrated for practical purposes.
We consider the problem of sketching a set valuation function, which is defined as the expectation of a valuation function of independent random item values. We show that for monotone subadditive or submodular valuation functions satisfying a weak homogeneity condition, or certain other conditions, there exist discretized distributions of item values with $O(k\log(k))$ support sizes that yield a sketch valuation function which is a constant-factor approximation, for any value query for a set of items of cardinality less than or equal to $k$. The discretized distributions can be efficiently computed by an algorithm for each item's value distribution separately. Our results hold under conditions that accommodate a wide range of valuation functions arising in applications, such as the value of a team corresponding to the best performance of a team member, constant elasticity of substitution production functions exhibiting diminishing returns used in economics and consumer theory, and others. Sketch valuation functions are particularly valuable for finding approximate solutions to optimization problems such as best set selection and welfare maximization. They enable computationally efficient evaluation of approximate value oracle queries and provide an approximation guarantee for the underlying optimization problem.
While score-based generative models (SGMs) have achieved remarkable success in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a notion of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep neural network approximation rate for the true score function associated with the forward process, which is interesting in its own right.
This paper addresses structured normwise, mixed, and componentwise condition numbers (CNs) for a linear function of the solution to the generalized saddle point problem (GSPP). We present a general framework enabling us to measure the structured CNs of the individual solution components and derive their explicit formulae when the input matrices have symmetric, Toeplitz, or some general linear structures. In addition, compact formulae for the unstructured CNs are obtained, which recover previous results on CNs for GSPPs for specific choices of the linear function. Furthermore, an application of the derived structured CNs is provided to determine the structured CNs for the weighted Teoplitz regularized least-squares problems and Tikhonov regularization problems, which retrieves some previous studies in the literature.
We consider a model selection problem for structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. First, we propose the quasi-Akaike information criterion of the SEM and study the asymptotic properties. Next, we consider the situation where the set of competing models includes some misspecified parametric models. It is shown that the probability of choosing the misspecified models converges to zero. Furthermore, examples and simulation results are given.
Mesh-based Graph Neural Networks (GNNs) have recently shown capabilities to simulate complex multiphysics problems with accelerated performance times. However, mesh-based GNNs require a large number of message-passing (MP) steps and suffer from over-smoothing for problems involving very fine mesh. In this work, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative multigrid solver, coupled with adaptive mesh refinement (AMR), to mitigate challenges with conventional mesh-based GNNs. We use the framework to accelerate phase field (PF) fracture problems involving coupled partial differential equations with a near-singular operator due to near-zero modulus inside the crack. We define the initial graph representation using all mesh resolution levels. We perform a series of downsampling steps using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach the original graph. We use skip connectors from the generated embedding during coarsening to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of training datasets needed to simulate different crack configurations and loading conditions. The trained framework showed accelerated simulation times, while maintaining high accuracy for all cases compared to physics-based PF fracture model. Finally, this work provides a new approach to accelerate a variety of mesh-based engineering multiphysics problems