A long-standing challenge for a robotic manipulation system operating in real-world scenarios is adapting and generalizing its acquired motor skills to unseen environments. We tackle this challenge employing hybrid skill models that integrate imitation and reinforcement paradigms, to explore how the learning and adaptation of a skill, along with its core grounding in the scene through a learned keypoint, can facilitate such generalization. To that end, we develop Keypoint Integrated Soft Actor-Critic Gaussian Mixture Models (KIS-GMM) approach that learns to predict the reference of a dynamical system within the scene as a 3D keypoint, leveraging visual observations obtained by the robot's physical interactions during skill learning. Through conducting comprehensive evaluations in both simulated and real-world environments, we show that our method enables a robot to gain a significant zero-shot generalization to novel environments and to refine skills in the target environments faster than learning from scratch. Importantly, this is achieved without the need for new ground truth data. Moreover, our method effectively copes with scene displacements.
Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: //github.com/wangkiw/TEEN
Temporal action localization aims to identify the boundaries and categories of actions in videos, such as scoring a goal in a football match. Single-frame supervision has emerged as a labor-efficient way to train action localizers as it requires only one annotated frame per action. However, it often suffers from poor performance due to the lack of precise boundary annotations. To address this issue, we propose a visual analysis method that aligns similar actions and then propagates a few user-provided annotations (e.g. , boundaries, category labels) to similar actions via the generated alignments. Our method models the alignment between actions as a heaviest path problem and the annotation propagation as a quadratic optimization problem. As the automatically generated alignments may not accurately match the associated actions and could produce inaccurate localization results, we develop a storyline visualization to explain the localization results of actions and their alignments. This visualization facilitates users in correcting wrong localization results and misalignments. The corrections are then used to improve the localization results of other actions. The effectiveness of our method in improving localization performance is demonstrated through quantitative evaluation and a case study.
A strategy for the orchestration of hybrid classical-quantum workloads on supercomputers featuring quantum devices is proposed. The method makes use of heterogeneous job launches with Slurm to interleave classical and quantum computation, thereby reducing idle time of the quantum components. To better understand the possible shortcomings and bottlenecks of such a workload, an example application is investigated that offloads parts of the computation to a quantum device. It executes on a classical HPC system, with a server mimicking the quantum device, within the MPMD paradigm in Slurm. Quantum circuits are synthesized by means of the Classiq software suite according to the needs of the scientific application, and the Qiskit Aer circuit simulator computes the state vectors. The HHL quantum algorithm for linear systems of equations is used to solve the algebraic problem from the discretization of a linear differential equation. Communication takes place over the MPI, which is broadly employed in the HPC community. Extraction of state vectors and circuit synthesis are the most time consuming, while communication is negligible in this setup. The present test bed serves as a basis for more advanced hybrid workloads eventually involving a real quantum device.
Real-world multi-agent tasks usually involve dynamic team composition with the emergence of roles, which should also be a key to efficient cooperation in multi-agent reinforcement learning (MARL). Drawing inspiration from the correlation between roles and agent's behavior patterns, we propose a novel framework of Attention-guided COntrastive Role representation learning for MARL (ACORM) to promote behavior heterogeneity, knowledge transfer, and skillful coordination across agents. First, we introduce mutual information maximization to formalize role representation learning, derive a contrastive learning objective, and concisely approximate the distribution of negative pairs. Second, we leverage an attention mechanism to prompt the global state to attend to learned role representations in value decomposition, implicitly guiding agent coordination in a skillful role space to yield more expressive credit assignment. Experiments and visualizations on challenging StarCraft II micromanagement tasks demonstrate the state-of-the-art performance of our method and its advantages over existing approaches. Our code is available at //github.com/NJU-RL/ACORM}{//github.com/NJU-RL/ACORM.
Learning from Text-Attributed Graphs (TAGs) has attracted significant attention due to its wide range of real-world applications. The rapid evolution of large language models (LLMs) has revolutionized the way we process textual data, which indicates a strong potential to replace shallow text embedding generally used in Graph Neural Networks (GNNs). However, we find that existing LLM approaches that exploit text information in graphs suffer from inferior computation and data efficiency. In this work, we introduce a novel and efficient approach for the end-to-end fine-tuning of Large Language Models (LLMs) on TAGs, named LEADING. The proposed approach maintains computation cost and memory overhead comparable to the graph-less fine-tuning of LLMs. Moreover, it transfers the rick knowledge in LLMs to downstream graph learning tasks effectively with limited labeled data in semi-supervised learning. Its superior computation and data efficiency are demonstrated through comprehensive experiments, offering a promising solution for a wide range of LLMs and graph learning tasks on TAGs.
Although current data augmentation methods are successful to alleviate the data insufficiency, conventional augmentation are primarily intra-domain while advanced generative adversarial networks (GANs) generate images remaining uncertain, particularly in small-scale datasets. In this paper, we propose a parameterized GAN (ParaGAN) that effectively controls the changes of synthetic samples among domains and highlights the attention regions for downstream classification. Specifically, ParaGAN incorporates projection distance parameters in cyclic projection and projects the source images to the decision boundary to obtain the class-difference maps. Our experiments show that ParaGAN can consistently outperform the existing augmentation methods with explainable classification on two small-scale medical datasets.
Representing and rendering dynamic scenes has been an important but challenging task. Especially, to accurately model complex motions, high efficiency is usually hard to guarantee. To achieve real-time dynamic scene rendering while also enjoying high training and storage efficiency, we propose 4D Gaussian Splatting (4D-GS) as a holistic representation for dynamic scenes rather than applying 3D-GS for each individual frame. In 4D-GS, a novel explicit representation containing both 3D Gaussians and 4D neural voxels is proposed. A decomposed neural voxel encoding algorithm inspired by HexPlane is proposed to efficiently build Gaussian features from 4D neural voxels and then a lightweight MLP is applied to predict Gaussian deformations at novel timestamps. Our 4D-GS method achieves real-time rendering under high resolutions, 82 FPS at an 800$\times$800 resolution on an RTX 3090 GPU while maintaining comparable or better quality than previous state-of-the-art methods. More demos and code are available at //guanjunwu.github.io/4dgs/.
In the process of training a generative model, it becomes essential to measure the discrepancy between two high-dimensional probability distributions: the generative distribution and the ground-truth distribution of the observed dataset. Recently, there has been growing interest in an approach that involves slicing high-dimensional distributions, with the Cramer-Wold distance emerging as a promising method. However, we have identified that the Cramer-Wold distance primarily focuses on joint distributional learning, whereas understanding marginal distributional patterns is crucial for effective synthetic data generation. In this paper, we introduce a novel measure of dissimilarity, the mixture Cramer-Wold distance. This measure enables us to capture both marginal and joint distributional information simultaneously, as it incorporates a mixture measure with point masses on standard basis vectors. Building upon the mixture Cramer-Wold distance, we propose a new generative model called CWDAE (Cramer-Wold Distributional AutoEncoder), which shows remarkable performance in generating synthetic data when applied to real tabular datasets. Furthermore, our model offers the flexibility to adjust the level of data privacy with ease.
Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.