亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, large-scale pre-trained models such as Segment-Anything Model (SAM) and Contrastive Language-Image Pre-training (CLIP) have demonstrated remarkable success and revolutionized the field of computer vision. These foundation vision models effectively capture knowledge from a large-scale broad data with their vast model parameters, enabling them to perform zero-shot segmentation on previously unseen data without additional training. While they showcase competence in 2D tasks, their potential for enhancing 3D scene understanding remains relatively unexplored. To this end, we present a novel framework that adapts various foundational models for the 3D point cloud segmentation task. Our approach involves making initial predictions of 2D semantic masks using different large vision models. We then project these mask predictions from various frames of RGB-D video sequences into 3D space. To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting. We examine diverse scenarios, like zero-shot learning and limited guidance from sparse 2D point labels, to assess the pros and cons of different vision foundation models. Our approach is experimented on ScanNet dataset for 3D indoor scenes, and the results demonstrate the effectiveness of adopting general 2D foundation models on solving 3D point cloud segmentation tasks.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Next · 可辨認的 · AI · 張成子空間 ·
2023 年 12 月 22 日

Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI). We contribute a comprehensive research agenda that lays out future directions of Generative AI spanning three levels: aligning with human values; assimilating human intents; and augmenting human abilities. By identifying these next-steps, we intend to draw interdisciplinary research teams to pursue a coherent set of emergent ideas in HGAI, focusing on their interested topics while maintaining a coherent big picture of the future work landscape.

Generative Adversarial Networks (GANs) have shown remarkable success in modeling complex data distributions for image-to-image translation. Still, their high computational demands prohibit their deployment in practical scenarios like edge devices. Existing GAN compression methods mainly rely on knowledge distillation or convolutional classifiers' pruning techniques. Thus, they neglect the critical characteristic of GANs: their local density structure over their learned manifold. Accordingly, we approach GAN compression from a new perspective by explicitly encouraging the pruned model to preserve the density structure of the original parameter-heavy model on its learned manifold. We facilitate this objective for the pruned model by partitioning the learned manifold of the original generator into local neighborhoods around its generated samples. Then, we propose a novel pruning objective to regularize the pruned model to preserve the local density structure over each neighborhood, resembling the kernel density estimation method. Also, we develop a collaborative pruning scheme in which the discriminator and generator are pruned by two pruning agents. We design the agents to capture interactions between the generator and discriminator by exchanging their peer's feedback when determining corresponding models' architectures. Thanks to such a design, our pruning method can efficiently find performant sub-networks and can maintain the balance between the generator and discriminator more effectively compared to baselines during pruning, thereby showing more stable pruning dynamics. Our experiments on image translation GAN models, Pix2Pix and CycleGAN, with various benchmark datasets and architectures demonstrate our method's effectiveness.

Vision Transformers (ViTs) have achieved state-of-the-art results on various computer vision tasks, including 3D object detection. However, their end-to-end implementation also makes ViTs less explainable, which can be a challenge for deploying them in safety-critical applications, such as autonomous driving, where it is important for authorities, developers, and users to understand the model's reasoning behind its predictions. In this paper, we propose a novel method for generating saliency maps for a DetR-like ViT with multiple camera inputs used for 3D object detection. Our method is based on the raw attention and is more efficient than gradient-based methods. We evaluate the proposed method on the nuScenes dataset using extensive perturbation tests and show that it outperforms other explainability methods in terms of visual quality and quantitative metrics. We also demonstrate the importance of aggregating attention across different layers of the transformer. Our work contributes to the development of explainable AI for ViTs, which can help increase trust in AI applications by establishing more transparency regarding the inner workings of AI models.

This work aims to provide an engagement decision support tool for Beyond Visual Range (BVR) air combat in the context of Defensive Counter Air (DCA) missions. In BVR air combat, engagement decision refers to the choice of the moment the pilot engages a target by assuming an offensive stance and executing corresponding maneuvers. To model this decision, we use the Brazilian Air Force's Aerospace Simulation Environment (\textit{Ambiente de Simula\c{c}\~ao Aeroespacial - ASA} in Portuguese), which generated 3,729 constructive simulations lasting 12 minutes each and a total of 10,316 engagements. We analyzed all samples by an operational metric called the DCA index, which represents, based on the experience of subject matter experts, the degree of success in this type of mission. This metric considers the distances of the aircraft of the same team and the opposite team, the point of Combat Air Patrol, and the number of missiles used. By defining the engagement status right before it starts and the average of the DCA index throughout the engagement, we create a supervised learning model to determine the quality of a new engagement. An algorithm based on decision trees, working with the XGBoost library, provides a regression model to predict the DCA index with a coefficient of determination close to 0.8 and a Root Mean Square Error of 0.05 that can furnish parameters to the BVR pilot to decide whether or not to engage. Thus, using data obtained through simulations, this work contributes by building a decision support system based on machine learning for BVR air combat.

Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc anomaly detection techniques to detect (and discard) these anomalous samples have been proposed in the recent past. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for DL based applications. We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches. We discuss various techniques in each of the categories and provide the relative strengths and weaknesses of the approaches. Our goal in this survey is to provide an easier yet better understanding of the techniques belonging to different categories in which research has been done on this topic. Finally, we highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司