亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) systems face performance challenges in dealing with heterogeneous devices and non-identically distributed data across clients. We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments to address these issues. Our aggregation method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities. Additionally, we also immediately provide an updated global model to clients after they upload their local models to reduce idle time and improve training efficiency. We evaluate our approach within an AFL deployment consisting of 10 simulated clients with heterogeneous compute constraints and non-IID data. The simulation results, using the FashionMNIST dataset, demonstrate over 10% and 19% improvement in global model accuracy compared to state-of-the-art methods PAPAYA and FedAsync, respectively. Our dynamic aggregation method allows reliable global model training despite limiting client resources and statistical data heterogeneity. This improves robustness and scalability for real-world FL deployments.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Learning · 控制器 · 穩健性 · 端到端 ·
2024 年 3 月 6 日

Recent advances of locomotion controllers utilizing deep reinforcement learning (RL) have yielded impressive results in terms of achieving rapid and robust locomotion across challenging terrain, such as rugged rocks, non-rigid ground, and slippery surfaces. However, while these controllers primarily address challenges underneath the robot, relatively little research has investigated legged mobility through confined 3D spaces, such as narrow tunnels or irregular voids, which impose all-around constraints. The cyclic gait patterns resulted from existing RL-based methods to learn parameterized locomotion skills characterized by motion parameters, such as velocity and body height, may not be adequate to navigate robots through challenging confined 3D spaces, requiring both agile 3D obstacle avoidance and robust legged locomotion. Instead, we propose to learn locomotion skills end-to-end from goal-oriented navigation in confined 3D spaces. To address the inefficiency of tracking distant navigation goals, we introduce a hierarchical locomotion controller that combines a classical planner tasked with planning waypoints to reach a faraway global goal location, and an RL-based policy trained to follow these waypoints by generating low-level motion commands. This approach allows the policy to explore its own locomotion skills within the entire solution space and facilitates smooth transitions between local goals, enabling long-term navigation towards distant goals. In simulation, our hierarchical approach succeeds at navigating through demanding confined 3D environments, outperforming both pure end-to-end learning approaches and parameterized locomotion skills. We further demonstrate the successful real-world deployment of our simulation-trained controller on a real robot.

We propose a channel estimation scheme based on joint sparsity pattern learning (JSPL) for massive multi-input multi-output (MIMO) orthogonal time-frequency-space (OTFS) modulation aided systems. By exploiting the potential joint sparsity of the delay-Doppler-angle (DDA) domain channel, the channel estimation problem is transformed into a sparse recovery problem. To solve it, we first apply the spike and slab prior model to iteratively estimate the support set of the channel matrix, and a higher-accuracy parameter update rule relying on the identified support set is introduced into the iteration. Then the specific values of the channel elements corresponding to the support set are estimated by the orthogonal matching pursuit (OMP) method. Both our simulation results and analysis demonstrate that the proposed JSPL channel estimation scheme achieves an improved performance over the representative state-of-the-art baseline schemes, despite its reduced pilot overhead.

We study online learning problems in constrained Markov decision processes (CMDPs) with adversarial losses and stochastic hard constraints. We consider two different scenarios. In the first one, we address general CMDPs, where we design an algorithm that attains sublinear regret and cumulative positive constraints violation. In the second scenario, under the mild assumption that a policy strictly satisfying the constraints exists and is known to the learner, we design an algorithm that achieves sublinear regret while ensuring that the constraints are satisfied at every episode with high probability. To the best of our knowledge, our work is the first to study CMDPs involving both adversarial losses and hard constraints. Indeed, previous works either focus on much weaker soft constraints--allowing for positive violation to cancel out negative ones--or are restricted to stochastic losses. Thus, our algorithms can deal with general non-stationary environments subject to requirements much stricter than those manageable with state-of-the-art algorithms. This enables their adoption in a much wider range of real-world applications, ranging from autonomous driving to online advertising and recommender systems.

We tackle a major challenge in federated learning (FL) -- achieving good performance under highly heterogeneous client distributions. The difficulty partially arises from two seemingly contradictory goals: learning a common model by aggregating the information from clients, and learning local personalized models that should be adapted to each local distribution. In this work, we propose Solution Simplex Clustered Federated Learning (SosicFL) for dissolving such contradiction. Based on the recent ideas of learning solution simplices, SosicFL assigns a subregion in a simplex to each client, and performs FL to learn a common solution simplex. This allows the client models to possess their characteristics within the degrees of freedom in the solution simplex, and at the same time achieves the goal of learning a global common model. Our experiments show that SosicFL improves the performance and accelerates the training process for global and personalized FL with minimal computational overhead.

This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-orthogonal multiple access (NOMA) under non-independent and identically distributed (non-IID) datasets, where multiple devices participate in the aggregation with time limitations and a finite number of sub-channels. A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented. Following that, solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties. Specifically, users' data distributions are parameterized as concentration parameters and grouped using spectral clustering, with Dirichlet distribution serving as the prior. The investigation into the generalization gap and convergence rate guides the design of sub-channel assignments through the matching-based algorithm, and the power allocation is achieved by Karush-Kuhn-Tucker (KKT) conditions with the derived closed-form solution. The extensive simulation results show that the proposed cluster-based FL framework can outperform FL baselines in terms of both test accuracy and convergence rate. Moreover, jointly optimizing sub-channel and power allocation in NOMA-enhanced networks can lead to a significant improvement.

The challenge of visual grounding and masking in multimodal machine translation (MMT) systems has encouraged varying approaches to the detection and selection of visually-grounded text tokens for masking. We introduce new methods for detection of visually and contextually relevant (concrete) tokens from source sentences, including detection with natural language processing (NLP), detection with object detection, and a joint detection-verification technique. We also introduce new methods for selection of detected tokens, including shortest $n$ tokens, longest $n$ tokens, and all detected concrete tokens. We utilize the GRAM MMT architecture to train models against synthetically collated multimodal datasets of source images with masked sentences, showing performance improvements and improved usage of visual context during translation tasks over the baseline model.

Due to the inability to interact with the environment, offline reinforcement learning (RL) methods face the challenge of estimating the Out-of-Distribution (OOD) points. Existing methods for addressing this issue either control policy to exclude the OOD action or make the $Q$ function pessimistic. However, these methods can be overly conservative or fail to identify OOD areas accurately. To overcome this problem, we propose a Constrained Policy optimization with Explicit Behavior density (CPED) method that utilizes a flow-GAN model to explicitly estimate the density of behavior policy. By estimating the explicit density, CPED can accurately identify the safe region and enable optimization within the region, resulting in less conservative learning policies. We further provide theoretical results for both the flow-GAN estimator and performance guarantee for CPED by showing that CPED can find the optimal $Q$-function value. Empirically, CPED outperforms existing alternatives on various standard offline reinforcement learning tasks, yielding higher expected returns.

Machine learning (ML) provides powerful tools for predictive modeling. ML's popularity stems from the promise of sample-level prediction with applications across a variety of fields from physics and marketing to healthcare. However, if not properly implemented and evaluated, ML pipelines may contain leakage typically resulting in overoptimistic performance estimates and failure to generalize to new data. This can have severe negative financial and societal implications. Our aim is to expand understanding associated with causes leading to leakage when designing, implementing, and evaluating ML pipelines. Illustrated by concrete examples, we provide a comprehensive overview and discussion of various types of leakage that may arise in ML pipelines.

Federated learning (FL) has been widely deployed to enable machine learning training on sensitive data across distributed devices. However, the decentralized learning paradigm and heterogeneity of FL further extend the attack surface for backdoor attacks. Existing FL attack and defense methodologies typically focus on the whole model. None of them recognizes the existence of backdoor-critical (BC) layers-a small subset of layers that dominate the model vulnerabilities. Attacking the BC layers achieves equivalent effects as attacking the whole model but at a far smaller chance of being detected by state-of-the-art (SOTA) defenses. This paper proposes a general in-situ approach that identifies and verifies BC layers from the perspective of attackers. Based on the identified BC layers, we carefully craft a new backdoor attack methodology that adaptively seeks a fundamental balance between attacking effects and stealthiness under various defense strategies. Extensive experiments show that our BC layer-aware backdoor attacks can successfully backdoor FL under seven SOTA defenses with only 10% malicious clients and outperform the latest backdoor attack methods.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司