亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A word is called closed if it has a prefix which is also its suffix and there is no internal occurrences of this prefix in the word. In this paper we study words that are rich in closed factors, i.e., which contain the maximal possible number of distinct closed factors. As the main result, we show that for finite words the asymptotics of the maximal number of distinct closed factors in a word of length $n$ is $\frac{n^2}{6}$. For infinite words, we show there exist words such that each their factor of length $n$ contains a quadratic number of distinct closed factors, with uniformly bounded constant; we call such words infinite closed-rich. We provide several necessary and some sufficient conditions for a word to be infinite closed rich. For example, we show that all linearly recurrent words are closed-rich. We provide a characterization of rich words among Sturmian words. Certain examples we provide involve non-constructive methods.

相關內容

Stochastic epidemic models provide an interpretable probabilistic description of the spread of a disease through a population. Yet, fitting these models when the epidemic process is only partially observed is a notoriously difficult task due to the intractability of the likelihood for many classical models. To remedy this issue, this article introduces a novel data-augmented MCMC algorithm for fast and exact Bayesian inference for the stochastic SIR model given discretely observed infection incidence counts. In a Metropolis-Hastings step, new event times of the latent data are jointly proposed from a surrogate process that closely resembles the SIR, and from which we can efficiently generate epidemics compatible with the observed data. The proposed DA-MCMC algorithm is fast and, since the latent data are generated from a faithful approximation of the target model, a large portion thereof can be updated per iteration without prohibitively lowering the acceptance rate. We find that the method explores the high-dimensional latent space efficiently and scales to outbreaks with hundreds of thousands of individuals, and we show that the Markov chain underlying the algorithm is uniformly ergodic. We validate its performance via thorough simulation experiments and a case study on the 2013-2015 Ebola outbreak in Western Africa.

The prefix palindromic length $p_{\mathbf{u}}(n)$ of an infinite word $\mathbf{u}$ is the minimal number of concatenated palindromes needed to express the prefix of length $n$ of $\mathbf{u}$. This function is surprisingly difficult to study; in particular, the conjecture that $p_{\mathbf{u}}(n)$ can be bounded only if $\mathbf{u}$ is ultimately periodic is open since 2013. A more recent conjecture concerns the prefix palindromic length of the period doubling word: it seems that it is not $2$-regular, and if it is true, this would give a rare if not unique example of a non-regular function of a $2$-automatic word. For some other $k$-automatic words, however, the prefix palindromic length is known to be $k$-regular. Here we add to the list of those words the Sierpinski word $\mathbf{s}$ and give a complete description of $p_{\mathbf{s}}(n)$.

We study the off-policy evaluation (OPE) problem in an infinite-horizon Markov decision process with continuous states and actions. We recast the $Q$-function estimation into a special form of the nonparametric instrumental variables (NPIV) estimation problem. We first show that under one mild condition the NPIV formulation of $Q$-function estimation is well-posed in the sense of $L^2$-measure of ill-posedness with respect to the data generating distribution, bypassing a strong assumption on the discount factor $\gamma$ imposed in the recent literature for obtaining the $L^2$ convergence rates of various $Q$-function estimators. Thanks to this new well-posed property, we derive the first minimax lower bounds for the convergence rates of nonparametric estimation of $Q$-function and its derivatives in both sup-norm and $L^2$-norm, which are shown to be the same as those for the classical nonparametric regression (Stone, 1982). We then propose a sieve two-stage least squares estimator and establish its rate-optimality in both norms under some mild conditions. Our general results on the well-posedness and the minimax lower bounds are of independent interest to study not only other nonparametric estimators for $Q$-function but also efficient estimation on the value of any target policy in off-policy settings.

In model extraction attacks, adversaries can steal a machine learning model exposed via a public API by repeatedly querying it and adjusting their own model based on obtained predictions. To prevent model stealing, existing defenses focus on detecting malicious queries, truncating, or distorting outputs, thus necessarily introducing a tradeoff between robustness and model utility for legitimate users. Instead, we propose to impede model extraction by requiring users to complete a proof-of-work before they can read the model's predictions. This deters attackers by greatly increasing (even up to 100x) the computational effort needed to leverage query access for model extraction. Since we calibrate the effort required to complete the proof-of-work to each query, this only introduces a slight overhead for regular users (up to 2x). To achieve this, our calibration applies tools from differential privacy to measure the information revealed by a query. Our method requires no modification of the victim model and can be applied by machine learning practitioners to guard their publicly exposed models against being easily stolen.

Estimating the mixing density of a mixture distribution remains an interesting problem in statistics literature. Using a stochastic approximation method, Newton and Zhang (1999) introduced a fast recursive algorithm for estimating the mixing density of a mixture. Under suitably chosen weights the stochastic approximation estimator converges to the true solution. In Tokdar et. al. (2009) the consistency of this recursive estimation method was established. However, the proof of consistency of the resulting estimator used independence among observations as an assumption. Here, we extend the investigation of performance of Newton's algorithm to several dependent scenarios. We first prove that the original algorithm under certain conditions remains consistent when the observations are arising form a weakly dependent process with fixed marginal with the target mixture as the marginal density. For some of the common dependent structures where the original algorithm is no longer consistent, we provide a modification of the algorithm that generates a consistent estimator.

Consider a set $P$ of $n$ points in $\mathbb{R}^d$. In the discrete median line segment problem, the objective is to find a line segment bounded by a pair of points in $P$ such that the sum of the Euclidean distances from $P$ to the line segment is minimized. In the continuous median line segment problem, a real number $\ell>0$ is given, and the goal is to locate a line segment of length $\ell$ in $\mathbb{R}^d$ such that the sum of the Euclidean distances between $P$ and the line segment is minimized. To begin with, we show how to compute $(1+\epsilon\Delta)$- and $(1+\epsilon)$-approximations to a discrete median line segment in time $O(n\epsilon^{-2d}\log n)$ and $O(n^2\epsilon^{-d})$, respectively, where $\Delta$ is the spread of line segments spanned by pairs of points. While developing our algorithms, by using the principle of pair decomposition, we derive new data structures that allow us to quickly approximate the sum of the distances from a set of points to a given line segment or point. To our knowledge, our utilization of pair decompositions for solving minsum facility location problems is the first of its kind -- it is versatile and easily implementable. Furthermore, we prove that it is impossible to construct a continuous median line segment for $n\geq3$ non-collinear points in the plane by using only ruler and compass. In view of this, we present an $O(n^d\epsilon^{-d})$-time algorithm for approximating a continuous median line segment in $\mathbb{R}^d$ within a factor of $1+\epsilon$. The algorithm is based upon generalizing the point-segment pair decomposition from the discrete to the continuous domain. Last but not least, we give an $(1+\epsilon)$-approximation algorithm, whose time complexity is sub-quadratic in $n$, for solving the constrained median line segment problem in $\mathbb{R}^2$ where an endpoint or the slope of the median line segment is given at input.

We consider the problem of finding tuned regularized parameter estimators for linear models. We start by showing that three known optimal linear estimators belong to a wider class of estimators that can be formulated as a solution to a weighted and constrained minimization problem. The optimal weights, however, are typically unknown in many applications. This begs the question, how should we choose the weights using only the data? We propose using the covariance fitting SPICE-methodology to obtain data-adaptive weights and show that the resulting class of estimators yields tuned versions of known regularized estimators - such as ridge regression, LASSO, and regularized least absolute deviation. These theoretical results unify several important estimators under a common umbrella. The resulting tuned estimators are also shown to be practically relevant by means of a number of numerical examples.

Neural Radiance Fields (NeRF) have recently gained a surge of interest within the computer vision community for its power to synthesize photorealistic novel views of real-world scenes. One limitation of NeRF, however, is its requirement of accurate camera poses to learn the scene representations. In this paper, we propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect (or even unknown) camera poses -- the joint problem of learning neural 3D representations and registering camera frames. We establish a theoretical connection to classical image alignment and show that coarse-to-fine registration is also applicable to NeRF. Furthermore, we show that na\"ively applying positional encoding in NeRF has a negative impact on registration with a synthesis-based objective. Experiments on synthetic and real-world data show that BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time. This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems (e.g. SLAM) and potential applications for dense 3D mapping and reconstruction.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

北京阿比特科技有限公司