Many future technologies rely on neural networks, but verifying the correctness of their behavior remains a major challenge. It is known that neural networks can be fragile in the presence of even small input perturbations, yielding unpredictable outputs. The verification of neural networks is therefore vital to their adoption, and a number of approaches have been proposed in recent years. In this paper we focus on semidefinite programming (SDP) based techniques for neural network verification, which are particularly attractive because they can encode expressive behaviors while ensuring a polynomial time decision. Our starting point is the DeepSDP framework proposed by Fazlyab et al, which uses quadratic constraints to abstract the verification problem into a large-scale SDP. When the size of the neural network grows, however, solving this SDP quickly becomes intractable. Our key observation is that by leveraging chordal sparsity and specific parametrizations of DeepSDP, we can decompose the primary computational bottleneck of DeepSDP -- a large linear matrix inequality (LMI) -- into an equivalent collection of smaller LMIs. Our parametrization admits a tunable parameter, allowing us to trade-off efficiency and accuracy in the verification procedure. We call our formulation Chordal-DeepSDP, and provide experimental evaluation to show that it can: (1) effectively increase accuracy with the tunable parameter and (2) outperform DeepSDP on deeper networks.
In this paper, we introduce a novel method of neural network weight compression. In our method, we store weight tensors as sparse, quantized matrix factors, whose product is computed on the fly during inference to generate the target model's weights. We use projected gradient descent methods to find quantized and sparse factorization of the weight tensors. We show that this approach can be seen as a unification of weight SVD, vector quantization, and sparse PCA. Combined with end-to-end fine-tuning our method exceeds or is on par with previous state-of-the-art methods in terms of the trade-off between accuracy and model size. Our method is applicable to both moderate compression regimes, unlike vector quantization, and extreme compression regimes.
Fasteners play a critical role in securing various parts of machinery. Deformations such as dents, cracks, and scratches on the surface of fasteners are caused by material properties and incorrect handling of equipment during production processes. As a result, quality control is required to ensure safe and reliable operations. The existing defect inspection method relies on manual examination, which consumes a significant amount of time, money, and other resources; also, accuracy cannot be guaranteed due to human error. Automatic defect detection systems have proven impactful over the manual inspection technique for defect analysis. However, computational techniques such as convolutional neural networks (CNN) and deep learning-based approaches are evolutionary methods. By carefully selecting the design parameter values, the full potential of CNN can be realised. Using Taguchi-based design of experiments and analysis, an attempt has been made to develop a robust automatic system in this study. The dataset used to train the system has been created manually for M14 size nuts having two labeled classes: Defective and Non-defective. There are a total of 264 images in the dataset. The proposed sequential CNN comes up with a 96.3% validation accuracy, 0.277 validation loss at 0.001 learning rate.
For supervised classification problems, this paper considers estimating the query's label probability through local regression using observed covariates. Well-known nonparametric kernel smoother and $k$-nearest neighbor ($k$-NN) estimator, which take label average over a ball around the query, are consistent but asymptotically biased particularly for a large radius of the ball. To eradicate such bias, local polynomial regression (LPoR) and multiscale $k$-NN (MS-$k$-NN) learn the bias term by local regression around the query and extrapolate it to the query itself. However, their theoretical optimality has been shown for the limit of the infinite number of training samples. For correcting the asymptotic bias with fewer observations, this paper proposes a \emph{local radial regression (LRR)} and its logistic regression variant called \emph{local radial logistic regression~(LRLR)}, by combining the advantages of LPoR and MS-$k$-NN. The idea is quite simple: we fit the local regression to observed labels by taking only the radial distance as the explanatory variable and then extrapolate the estimated label probability to zero distance. The usefulness of the proposed method is shown theoretically and experimentally. We prove the convergence rate of the $L^2$ risk for LRR with reference to MS-$k$-NN, and our numerical experiments, including real-world datasets of daily stock indices, demonstrate that LRLR outperforms LPoR and MS-$k$-NN.
Neural networks are increasingly relied upon as components of complex safety-critical systems such as autonomous vehicles. There is high demand for tools and methods that embed neural network verification in a larger verification cycle. However, neural network verification is difficult due to a wide range of verification properties of interest, each typically only amenable to verification in specialised solvers. In this paper, we show how Imandra, a functional programming language and a theorem prover originally designed for verification, validation and simulation of financial infrastructure can offer a holistic infrastructure for neural network verification. We develop a novel library CheckINN that formalises neural networks in Imandra, and covers different important facets of neural network verification.
Spatial data can exhibit dependence structures more complicated than can be represented using models that rely on the traditional assumptions of stationarity and isotropy. Several statistical methods have been developed to relax these assumptions. One in particular, the "spatial deformation approach" defines a transformation from the geographic space in which data are observed, to a latent space in which stationarity and isotropy are assumed to hold. Taking inspiration from this class of models, we develop a new model for spatially dependent data observed on graphs. Our method implies an embedding of the graph into Euclidean space wherein the covariance can be modeled using traditional covariance functions such as those from the Mat\'{e}rn family. This is done via a class of graph metrics compatible with such covariance functions. By estimating the edge weights which underlie these metrics, we can recover the "intrinsic distance" between nodes of a graph. We compare our model to existing methods for spatially dependent graph data, primarily conditional autoregressive (CAR) models and their variants and illustrate the advantages our approach has over traditional methods. We fit our model and competitors to bird abundance data for several species in North Carolina. We find that our model fits the data best, and provides insight into the interaction between species-specific spatial distributions and geography.
In order to be able to apply graph canonical labelling and isomorphism checking within interactive theorem provers, either these checking algorithms must be mechanically verified, or their results must be verifiable by independent checkers. We analyze a state-of-the-art graph canonical labelling algorithm (described by McKay and Piperno) and formulate it in a form of a formal proof system. We provide an implementation that can export a proof that the obtained graph is the canonical form of a given graph. Such proofs are then verified by our independent checker, and can be used to certify that two given graphs are non-isomorphic.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.