The differences in brain dynamics across human subjects, commonly referred to as human artifacts, have long been a challenge in the field, severely limiting the generalizability of brain dynamics recognition models. Traditional methods for human artifact removal typically employ spectrum filtering or blind source separation, based on simple prior distribution assumptions, which ultimately constrain the capacity to model each subject's domain variance. In this paper, we propose a novel approach to model human artifact removal as a generative denoising process, capable of simultaneously generating and learning subject-specific domain variance and invariant brain signals. We introduce the Domain Specific Denoising Diffusion Probabilistic Model (DS-DDPM), which decomposes the denoising process into subject domain variance and invariant content at each step. By incorporating subtle constraints and probabilistic design, we formulate domain variance and invariant content into orthogonal spaces and further supervise the domain variance with a subject classifier. This method is the first to explicitly separate human subject-specific variance through generative denoising processes, outperforming previous methods in two aspects: 1) DS-DDPM can learn more accurate subject-specific domain variance through domain generative learning compared to traditional filtering methods, and 2) DS-DDPM is the first approach capable of explicitly generating subject noise distribution. Comprehensive experimental results indicate that DS-DDPM effectively alleviates domain distribution bias for cross-domain brain dynamics signal recognition.
Recent advancements in large-scale text-to-image diffusion models have enabled many applications in image editing. However, none of these methods have been able to edit the layout of single existing images. To address this gap, we propose the first framework for layout editing of a single image while preserving its visual properties, thus allowing for continuous editing on a single image. Our approach is achieved through two key modules. First, to preserve the characteristics of multiple objects within an image, we disentangle the concepts of different objects and embed them into separate textual tokens using a novel method called masked textual inversion. Next, we propose a training-free optimization method to perform layout control for a pre-trained diffusion model, which allows us to regenerate images with learned concepts and align them with user-specified layouts. As the first framework to edit the layout of existing images, we demonstrate that our method is effective and outperforms other baselines that were modified to support this task. Our code will be freely available for public use upon acceptance.
Learning-based solutions for vision tasks require a large amount of labeled training data to ensure their performance and reliability. In single-task vision-based settings, inconsistency-based active learning has proven to be effective in selecting informative samples for annotation. However, there is a lack of research exploiting the inconsistency between multiple tasks in multi-task networks. To address this gap, we propose a novel multi-task active learning strategy for two coupled vision tasks: object detection and semantic segmentation. Our approach leverages the inconsistency between them to identify informative samples across both tasks. We propose three constraints that specify how the tasks are coupled and introduce a method for determining the pixels belonging to the object detected by a bounding box, to later quantify the constraints as inconsistency scores. To evaluate the effectiveness of our approach, we establish multiple baselines for multi-task active learning and introduce a new metric, mean Detection Segmentation Quality (mDSQ), tailored for the multi-task active learning comparison that addresses the performance of both tasks. We conduct extensive experiments on the nuImages and A9 datasets, demonstrating that our approach outperforms existing state-of-the-art methods by up to 3.4% mDSQ on nuImages. Our approach achieves 95% of the fully-trained performance using only 67% of the available data, corresponding to 20% fewer labels compared to random selection and 5% fewer labels compared to state-of-the-art selection strategy. Our code will be made publicly available after the review process.
Exoplanet detection by direct imaging is a difficult task: the faint signals from the objects of interest are buried under a spatially structured nuisance component induced by the host star. The exoplanet signals can only be identified when combining several observations with dedicated detection algorithms. In contrast to most of existing methods, we propose to learn a model of the spatial, temporal and spectral characteristics of the nuisance, directly from the observations. In a pre-processing step, a statistical model of their correlations is built locally, and the data are centered and whitened to improve both their stationarity and signal-to-noise ratio (SNR). A convolutional neural network (CNN) is then trained in a supervised fashion to detect the residual signature of synthetic sources in the pre-processed images. Our method leads to a better trade-off between precision and recall than standard approaches in the field. It also outperforms a state-of-the-art algorithm based solely on a statistical framework. Besides, the exploitation of the spectral diversity improves the performance compared to a similar model built solely from spatio-temporal data.
Graph contrastive learning (GCL), as an emerging self-supervised learning technique on graphs, aims to learn representations via instance discrimination. Its performance heavily relies on graph augmentation to reflect invariant patterns that are robust to small perturbations; yet it still remains unclear about what graph invariance GCL should capture. Recent studies mainly perform topology augmentations in a uniformly random manner in the spatial domain, ignoring its influence on the intrinsic structural properties embedded in the spectral domain. In this work, we aim to find a principled way for topology augmentations by exploring the invariance of graphs from the spectral perspective. We develop spectral augmentation which guides topology augmentations by maximizing the spectral change. Extensive experiments on both graph and node classification tasks demonstrate the effectiveness of our method in self-supervised representation learning. The proposed method also brings promising generalization capability in transfer learning, and is equipped with intriguing robustness property under adversarial attacks. Our study sheds light on a general principle for graph topology augmentation.
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding. Although diffusion models have achieved impressive quality and diversity of sample synthesis than other state-of-the-art models, they still suffer from costly sampling procedure and sub-optimal likelihood estimation. Recent studies have shown great enthusiasm on improving the performance of diffusion model. In this article, we present a first comprehensive review of existing variants of the diffusion models. Specifically, we provide a first taxonomy of diffusion models and categorize them variants to three types, namely sampling-acceleration enhancement, likelihood-maximization enhancement and data-generalization enhancement. We also introduce in detail other five generative models (i.e., variational autoencoders, generative adversarial networks, normalizing flow, autoregressive models, and energy-based models), and clarify the connections between diffusion models and these generative models. Then we make a thorough investigation into the applications of diffusion models, including computer vision, natural language processing, waveform signal processing, multi-modal modeling, molecular graph generation, time series modeling, and adversarial purification. Furthermore, we propose new perspectives pertaining to the development of this generative model.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.