亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove several new tight distributed lower bounds for classic symmetry breaking graph problems. As a basic tool, we first provide a new insightful proof that any deterministic distributed algorithm that computes a $\Delta$-coloring on $\Delta$-regular trees requires $\Omega(\log_\Delta n)$ rounds and any randomized algorithm requires $\Omega(\log_\Delta\log n)$ rounds. We prove this result by showing that a natural relaxation of the $\Delta$-coloring problem is a fixed point in the round elimination framework. As a first application, we show that our $\Delta$-coloring lower bound proof directly extends to arbdefective colorings. We exactly characterize which variants of the arbdefective coloring problem are "easy", and which of them instead are "hard". As a second application, which we see as our main contribution, we use the structure of the fixed point as a building block to prove lower bounds as a function of $\Delta$ for a large class of distributed symmetry breaking problems. For example, we obtain a tight lower bound for the fundamental problem of computing a $(2,\beta)$-ruling set. This is an exponential improvement over the best existing lower bound for the problem, which was proven in [FOCS '20]. Our lower bound even applies to a much more general family of problems that allows for almost arbitrary combinations of natural constraints from coloring problems, orientation problems, and independent set problems, and provides a single unified proof for known and new lower bound results for these types of problems. Our lower bounds as a function of $\Delta$ also imply lower bounds as a function of $n$. We obtain, for example, that maximal independent set, on trees, requires $\Omega(\log n / \log \log n)$ rounds for deterministic algorithms, which is tight.

相關內容

This paper considers the distributed optimization problem where each node of a peer-to-peer network minimizes a finite sum of objective functions by communicating with its neighboring nodes. In sharp contrast to the existing literature where the fastest distributed algorithms converge either with a global linear or a local superlinear rate, we propose a distributed adaptive Newton (DAN) algorithm with a global quadratic convergence rate. Our key idea lies in the design of a finite-time set-consensus method with Polyak's adaptive stepsize. Moreover, we introduce a low-rank matrix approximation (LA) technique to compress the innovation of Hessian matrix so that each node only needs to transmit message of dimension $\mathcal{O}(p)$ (where $p$ is the dimension of decision vectors) per iteration, which is essentially the same as that of first-order methods. Nevertheless, the resulting DAN-LA converges to an optimal solution with a global superlinear rate. Numerical experiments on logistic regression problems are conducted to validate their advantages over existing methods.

Hamilton and Moitra (2021) showed that, in certain regimes, it is not possible to accelerate Riemannian gradient descent in the hyperbolic plane if we restrict ourselves to algorithms which make queries in a (large) bounded domain and which receive gradients and function values corrupted by a (small) amount of noise. We show that acceleration remains unachievable for any deterministic algorithm which receives exact gradient and function-value information (unbounded queries, no noise). Our results hold for the classes of strongly and nonstrongly geodesically convex functions, and for a large class of Hadamard manifolds including hyperbolic spaces and the symmetric space $\mathrm{SL}(n) / \mathrm{SO}(n)$ of positive definite $n \times n$ matrices of determinant one. This cements a surprising gap between the complexity of convex optimization and geodesically convex optimization: for hyperbolic spaces, Riemannian gradient descent is optimal on the class of smooth and and strongly geodesically convex functions, in the regime where the condition number scales with the radius of the optimization domain. The key idea for proving the lower bound consists of perturbing the hard functions of Hamilton and Moitra (2021) with sums of bump functions chosen by a resisting oracle.

In the graphical calculus of planar string diagrams, equality is generated by exchange moves, which swap the heights of adjacent vertices. We show that left- and right-handed exchanges each give strongly normalizing rewrite strategies for connected string diagrams. We use this result to give a linear-time solution to the equivalence problem in the connected case, and a quadratic solution in the general case. We also give a stronger proof of the Joyal-Street coherence theorem, settling Selinger's conjecture on recumbent isotopy.

Sampling-based motion planning algorithms are widely used in robotics because they are very effective in high-dimensional spaces. However, the success rate and quality of the solutions are determined by an adequate selection of their parameters such as the distance between states, the local planner, and the sampling distribution. For robots with large configuration spaces or dynamic restrictions, selecting these parameters is a challenging task. This paper proposes a method for improving the performance to a set of the most popular sampling-based algorithms, the Rapidly-exploring Random Trees (RRTs) by adjusting the sampling method. The idea is to replace the uniform probability density function (U-PDF) with a custom distribution (C-PDF) learned from previously successful queries in similar tasks. With a few samples, our method builds a custom distribution that allows the RRT to grow to promising states that will lead to a solution. We tested our method in several autonomous driving tasks such as parking maneuvers, obstacle clearance and under narrow passages scenarios. The results show that the proposed method outperforms the original RRT and several improved versions in terms of success rate, tree density and computation time. In addition, the proposed method requires a relatively small set of examples, unlike current deep learning techniques that require a vast amount of examples.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.

We present the problem of selecting relevant premises for a proof of a given statement. When stated as a binary classification task for pairs (conjecture, axiom), it can be efficiently solved using artificial neural networks. The key difference between our advance to solve this problem and previous approaches is the use of just functional signatures of premises. To further improve the performance of the model, we use dimensionality reduction technique, to replace long and sparse signature vectors with their compact and dense embedded versions. These are obtained by firstly defining the concept of a context for each functor symbol, and then training a simple neural network to predict the distribution of other functor symbols in the context of this functor. After training the network, the output of its hidden layer is used to construct a lower dimensional embedding of a functional signature (for each premise) with a distributed representation of features. This allows us to use 512-dimensional embeddings for conjecture-axiom pairs, containing enough information about the original statements to reach the accuracy of 76.45% in premise selection task, only with simple two-layer densely connected neural networks.

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司