Hyperspectral Image (HSI) reconstruction has made gratifying progress with the deep unfolding framework by formulating the problem into a data module and a prior module. Nevertheless, existing methods still face the problem of insufficient matching with HSI data. The issues lie in three aspects: 1) fixed gradient descent step in the data module while the degradation of HSI is agnostic in the pixel-level. 2) inadequate prior module for 3D HSI cube. 3) stage interaction ignoring the differences in features at different stages. To address these issues, in this work, we propose a Pixel Adaptive Deep Unfolding Transformer (PADUT) for HSI reconstruction. In the data module, a pixel adaptive descent step is employed to focus on pixel-level agnostic degradation. In the prior module, we introduce the Non-local Spectral Transformer (NST) to emphasize the 3D characteristics of HSI for recovering. Moreover, inspired by the diverse expression of features in different stages and depths, the stage interaction is improved by the Fast Fourier Transform (FFT). Experimental results on both simulated and real scenes exhibit the superior performance of our method compared to state-of-the-art HSI reconstruction methods. The code is released at: //github.com/MyuLi/PADUT.
With the widespread application of causal inference, it is increasingly important to have tools which can test for the presence of causal effects in a diverse array of circumstances. In this vein we focus on the problem of testing for \emph{distributional} causal effects, where the treatment affects not just the mean, but also higher order moments of the distribution, as well as multidimensional or structured outcomes. We build upon a previously introduced framework, Counterfactual Mean Embeddings, for representing causal distributions within Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for the distributional embeddings. These improved estimators are inspired by doubly robust estimators of the causal mean, using a similar form within the kernel space. We analyse these estimators, proving they retain the doubly robust property and have improved convergence rates compared to the original estimators. This leads to new permutation based tests for distributional causal effects, using the estimators we propose as tests statistics. We experimentally and theoretically demonstrate the validity of our tests.
We present a novel framework to overcome the limitations of equivariant architectures in learning functions with group symmetries. In contrary to equivariant architectures, we use an arbitrary base model such as an MLP or a transformer and symmetrize it to be equivariant to the given group by employing a small equivariant network that parameterizes the probabilistic distribution underlying the symmetrization. The distribution is end-to-end trained with the base model which can maximize performance while reducing sample complexity of symmetrization. We show that this approach ensures not only equivariance to given group but also universal approximation capability in expectation. We implement our method on various base models, including patch-based transformers that can be initialized from pretrained vision transformers, and test them for a wide range of symmetry groups including permutation and Euclidean groups and their combinations. Empirical tests show competitive results against tailored equivariant architectures, suggesting the potential for learning equivariant functions for diverse groups using a non-equivariant universal base architecture. We further show evidence of enhanced learning in symmetric modalities, like graphs, when pretrained from non-symmetric modalities, like vision. Code is available at //github.com/jw9730/lps.
This paper aims to develop the intelligent traffic steering (TS) framework, which has recently been considered as one of the key developments of 3GPP for advanced 5G. Since achieving key performance indicators (KPIs) for heterogeneous services may not be possible in the monolithic architecture, a novel deep reinforcement learning (DRL)-based TS algorithm is proposed at the non-real-time (non-RT) RAN intelligent controller (RIC) within the open radio access network (ORAN) architecture. To enable ORAN's intelligence, we distribute traffic load onto appropriate paths, which helps efficiently allocate resources to end users in a downlink multi-service scenario. Our proposed approach employs a three-step hierarchical process that involves heuristics, machine learning, and convex optimization to steer traffic flows. Through system-level simulations, we show the superior performance of the proposed intelligent TS scheme, surpassing established benchmark systems by 45.50%.
Wasserstein distributionally robust estimators have emerged as powerful models for prediction and decision-making under uncertainty. These estimators provide attractive generalization guarantees: the robust objective obtained from the training distribution is an exact upper bound on the true risk with high probability. However, existing guarantees either suffer from the curse of dimensionality, are restricted to specific settings, or lead to spurious error terms. In this paper, we show that these generalization guarantees actually hold on general classes of models, do not suffer from the curse of dimensionality, and can even cover distribution shifts at testing. We also prove that these results carry over to the newly-introduced regularized versions of Wasserstein distributionally robust problems.
Collaborative manipulation task often requires negotiation using explicit or implicit communication. An important example is determining where to move when the goal destination is not uniquely specified, and who should lead the motion. This work is motivated by the ability of humans to communicate the desired destination of motion through back-and-forth force exchanges. Inherent to these exchanges is also the ability to dynamically assign a role to each participant, either taking the initiative or deferring to the partner's lead. In this paper, we propose a hierarchical robot control framework that emulates human behavior in communicating a motion destination to a human collaborator and in responding to their actions. At the top level, the controller consists of a set of finite-state machines corresponding to different levels of commitment of the robot to its desired goal configuration. The control architecture is loosely based on the human strategy observed in the human-human experiments, and the key component is a real-time intent recognizer that helps the robot respond to human actions. We describe the details of the control framework, and feature engineering and training process of the intent recognition. The proposed controller was implemented on a UR10e robot (Universal Robots) and evaluated through human studies. The experiments show that the robot correctly recognizes and responds to human input, communicates its intent clearly, and resolves conflict. We report success rates and draw comparisons with human-human experiments to demonstrate the effectiveness of the approach.
Controlling chatbot utterance generation with multiple attributes such as personalities, emotions and dialogue acts is a practically useful but under-studied problem. We propose a novel framework called DASC that possesses strong controllability with a weighted decoding paradigm, while improving generation quality with the grounding in an attribute semantics space. Generation with multiple attributes is then intuitively implemented with an interpolation of multiple attribute embeddings, which results in substantial reduction in the model sizes. Experiments show that DASC can achieve high control accuracy in generation task with the simultaneous control of 3 aspects while also producing interesting and reasonably sensible responses, even in an out-of-distribution robustness test.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.