In this study, we present the bicubic Hermite element method (BHEM), a new computational framework devised for the elastodynamic simulation of parametric thin-shell structures. The BHEM is constructed based on parametric quadrilateral Hermite patches, which serve as a unified representation for shell geometry, simulation, collision avoidance, as well as rendering. Compared with the commonly utilized linear FEM, the BHEM offers higher-order solution spaces, enabling the capture of more intricate and smoother geometries while employing significantly fewer finite elements. In comparison to other high-order methods, the BHEM achieves conforming $\mathcal{C}^1$ continuity for Kirchhoff-Love (KL) shells with minimal complexity. Furthermore, by leveraging the subdivision and convex hull properties of Hermite patches, we develop an efficient algorithm for ray-patch intersections, facilitating collision handling in simulations and ray tracing in rendering. This eliminates the need for laborious remodeling of the pre-existing parametric surface as the conventional approaches do. We substantiate our claims with comprehensive experiments, which demonstrate the high accuracy and versatility of the proposed method.
Learned Sparse Retrieval (LSR) is a group of neural methods designed to encode queries and documents into sparse lexical vectors. These vectors can be efficiently indexed and retrieved using an inverted index. While LSR has shown promise in text retrieval, its potential in multi-modal retrieval remains largely unexplored. Motivated by this, in this work, we explore the application of LSR in the multi-modal domain, i.e., we focus on Multi-Modal Learned Sparse Retrieval (MLSR). We conduct experiments using several MLSR model configurations and evaluate the performance on the image suggestion task. We find that solving the task solely based on the image content is challenging. Enriching the image content with its caption improves the model performance significantly, implying the importance of image captions to provide fine-grained concepts and context information of images. Our approach presents a practical and effective solution for training LSR retrieval models in multi-modal settings.
In this work, we study two fundamental graph optimization problems, minimum vertex cover (MVC) and maximum-cardinality matching (MCM), for intersection graphs of geometric objects, e.g., disks, rectangles, hypercubes, etc., in $d$-dimensional Euclidean space. We consider the problems in fully dynamic settings, allowing insertions and deletions of objects. We develop a general framework for dynamic MVC in intersection graphs, achieving sublinear amortized update time for most natural families of geometric objects. In particular, we show that - \begin{itemize} \item For a dynamic collection of disks in $\mathbb{R}^2$ or hypercubes in $\mathbb{R}^d$ (for constant $d$), it is possible to maintain a $(1+\varepsilon)$-approximate vertex cover in $\polylog$ amortized update time. These results also hold in the bipartite case. \item For a dynamic collection of rectangles in $\mathbb{R}^2$, it is possible to maintain a $(\frac{3}{2}+\varepsilon)$-approximate vertex cover in $\polylog$ amortized update time. \end{itemize} Along the way, we obtain the first near-linear time static algorithms for MVC in the above two cases with the same approximation factors. Next, we turn our attention to the MCM problem. Although our MVC algorithms automatically allow us to approximate the size of the MCM in bipartite geometric intersection graphs, they do not produce a matching. We give another general framework to maintain an approximate maximum matching, and further extend the approach to handle non-bipartite intersection graphs. In particular, we show that - \begin{itemize} \item For a dynamic collection of (bichromatic or monochromatic) disks in $\mathbb{R}^2$ or hypercubes in $\mathbb{R}^d$ (for constant $d$), it is possible to maintain a $(1+\varepsilon)$-approximate matching in $\polylog$ amortized update time. \end{itemize}
Motivated by the advances in conformal prediction (CP), we propose conformal predictive programming (CPP), an approach to solve chance constrained optimization (CCO) problems, i.e., optimization problems with nonlinear constraint functions affected by arbitrary random parameters. CPP utilizes samples from these random parameters along with the quantile lemma -- which is central to CP -- to transform the CCO problem into a deterministic optimization problem. We then present two tractable reformulations of CPP by: (1) writing the quantile as a linear program along with its KKT conditions (CPP-KKT), and (2) using mixed integer programming (CPP-MIP). CPP comes with marginal probabilistic feasibility guarantees for the CCO problem that are conceptually different from existing approaches, e.g., the sample approximation and the scenario approach. While we explore algorithmic similarities with the sample approximation approach, we emphasize that the strength of CPP is that it can easily be extended to incorporate different variants of CP. To illustrate this, we present robust conformal predictive programming to deal with distribution shifts in the uncertain parameters of the CCO problem.
This is a survey on the theory of adaptive finite element methods (AFEMs), which are fundamental in modern computational science and engineering but whose mathematical assessment is a formidable challenge. We present a self-contained and up-to-date discussion of AFEMs for linear second order elliptic PDEs and dimension d>1, with emphasis on foundational issues. After a brief review of functional analysis and basic finite element theory, including piecewise polynomial approximation in graded meshes, we present the core material for coercive problems. We start with a novel a posteriori error analysis applicable to rough data, which delivers estimators fully equivalent to the solution error. They are used in the design and study of three AFEMs depending on the structure of data. We prove linear convergence of these algorithms and rate-optimality provided the solution and data belong to suitable approximation classes. We also address the relation between approximation and regularity classes. We finally extend this theory to discontinuous Galerkin methods as prototypes of non-conforming AFEMs and beyond coercive problems to inf-sup stable AFEMs.
In this work, we present a nonlinear dynamics perspective on generating and connecting gaits for energetically conservative models of legged systems. In particular, we show that the set of conservative gaits constitutes a connected space of locally defined 1D submanifolds in the gait space. These manifolds are coordinate-free parameterized by energy level. We present algorithms for identifying such families of gaits through the use of numerical continuation methods, generating sets and bifurcation points. To this end, we also introduce several details for the numerical implementation. Most importantly, we establish the necessary condition for the Delassus' matrix to preserve energy across impacts. An important application of our work is with simple models of legged locomotion that are often able to capture the complexity of legged locomotion with just a few degrees of freedom and a small number of physical parameters. We demonstrate the efficacy of our framework on a one-legged hopper with four degrees of freedom.
While a variety of methods offer good yield prediction on histogrammed remote sensing data, vision Transformers are only sparsely represented in the literature. The Convolution vision Transformer (CvT) is being tested to evaluate vision Transformers that are currently achieving state-of-the-art results in many other vision tasks. CvT combines some of the advantages of convolution with the advantages of dynamic attention and global context fusion of Transformers. It performs worse than widely tested methods such as XGBoost and CNNs, but shows that Transformers have potential to improve yield prediction.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
We introduce an approach for deep reinforcement learning (RL) that improves upon the efficiency, generalization capacity, and interpretability of conventional approaches through structured perception and relational reasoning. It uses self-attention to iteratively reason about the relations between entities in a scene and to guide a model-free policy. Our results show that in a novel navigation and planning task called Box-World, our agent finds interpretable solutions that improve upon baselines in terms of sample complexity, ability to generalize to more complex scenes than experienced during training, and overall performance. In the StarCraft II Learning Environment, our agent achieves state-of-the-art performance on six mini-games -- surpassing human grandmaster performance on four. By considering architectural inductive biases, our work opens new directions for overcoming important, but stubborn, challenges in deep RL.
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs---a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DiffPool, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DiffPool yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.