We consider the Cahn-Hilliard equation with standard double-well potential. We employ a prototypical class of first order in time semi-implicit methods with implicit treatment of the linear dissipation term and explicit extrapolation of the nonlinear term. When the dissipation coefficient is held small, a conventional wisdom is to add a judiciously chosen stabilization term in order to afford relatively large time stepping and speed up the simulation. In practical numerical implementations it has been long observed that the resulting system exhibits remarkable stability properties in the regime where the stabilization parameter is $\mathcal O(1)$, the dissipation coefficient is vanishingly small and the size of the time step is moderately large. In this work we develop a new stability theory to address this perplexing phenomenon.
Motivated by the learned iterative soft thresholding algorithm (LISTA), we introduce a general class of neural networks suitable for sparse reconstruction from few linear measurements. By allowing a wide range of degrees of weight-sharing between the layers, we enable a unified analysis for very different neural network types, ranging from recurrent ones to networks more similar to standard feedforward neural networks. Based on training samples, via empirical risk minimization we aim at learning the optimal network parameters and thereby the optimal network that reconstructs signals from their low-dimensional linear measurements. We derive generalization bounds by analyzing the Rademacher complexity of hypothesis classes consisting of such deep networks, that also take into account the thresholding parameters. We obtain estimates of the sample complexity that essentially depend only linearly on the number of parameters and on the depth. We apply our main result to obtain specific generalization bounds for several practical examples, including different algorithms for (implicit) dictionary learning, and convolutional neural networks.
The numerical solution of a linear Schr\"odinger equation in the semiclassical regime is very well understood in a torus $\mathbb{T}^d$. A raft of modern computational methods are precise and affordable, while conserving energy and resolving high oscillations very well. This, however, is far from the case with regard to its solution in $\mathbb{R}^d$, a setting more suitable for many applications. In this paper we extend the theory of splitting methods to this end. The main idea is to derive the solution using a spectral method from a combination of solutions of the free Schr\"odinger equation and of linear scalar ordinary differential equations, in a symmetric Zassenhaus splitting method. This necessitates detailed analysis of certain orthonormal spectral bases on the real line and their evolution under the free Schr\"odinger operator.
A connected dominating set is a widely adopted model for the virtual backbone of a wireless sensor network. In this paper, we design an evolutionary algorithm for the minimum connected dominating set problem (MinCDS), whose performance is theoretically guaranteed in terms of both computation time and approximation ratio. Given a connected graph $G=(V,E)$, a connected dominating set (CDS) is a subset $C\subseteq V$ such that every vertex in $V\setminus C$ has a neighbor in $C$, and the subgraph of $G$ induced by $C$ is connected. The goal of MinCDS is to find a CDS of $G$ with the minimum cardinality. We show that our evolutionary algorithm can find a CDS in expected $O(n^3)$ time which approximates the optimal value within factor $(2+\ln\Delta)$, where $n$ and $\Delta$ are the number of vertices and the maximum degree of graph $G$, respectively.
DeepONets have recently been proposed as a framework for learning nonlinear operators mapping between infinite dimensional Banach spaces. We analyze DeepONets and prove estimates on the resulting approximation and generalization errors. In particular, we extend the universal approximation property of DeepONets to include measurable mappings in non-compact spaces. By a decomposition of the error into encoding, approximation and reconstruction errors, we prove both lower and upper bounds on the total error, relating it to the spectral decay properties of the covariance operators, associated with the underlying measures. We derive almost optimal error bounds with very general affine reconstructors and with random sensor locations as well as bounds on the generalization error, using covering number arguments. We illustrate our general framework with four prototypical examples of nonlinear operators, namely those arising in a nonlinear forced ODE, an elliptic PDE with variable coefficients and nonlinear parabolic and hyperbolic PDEs. While the approximation of arbitrary Lipschitz operators by DeepONets to accuracy $\epsilon$ is argued to suffer from a "curse of dimensionality" (requiring a neural networks of exponential size in $1/\epsilon$), in contrast, for all the above concrete examples of interest, we rigorously prove that DeepONets can break this curse of dimensionality (achieving accuracy $\epsilon$ with neural networks of size that can grow algebraically in $1/\epsilon$). Thus, we demonstrate the efficient approximation of a potentially large class of operators with this machine learning framework.
Unobserved confounding is one of the main challenges when estimating causal effects. We propose a causal reduction method that, given a causal model, replaces an arbitrary number of possibly high-dimensional latent confounders with a single latent confounder that takes values in the same space as the treatment variable, without changing the observational and interventional distributions the causal model entails. This allows us to estimate the causal effect in a principled way from combined data without relying on the common but often unrealistic assumption that all confounders have been observed. We apply our causal reduction in three different settings. In the first setting, we assume the treatment and outcome to be discrete. The causal reduction then implies bounds between the observational and interventional distributions that can be exploited for estimation purposes. In certain cases with highly unbalanced observational samples, the accuracy of the causal effect estimate can be improved by incorporating observational data. Second, for continuous variables and assuming a linear-Gaussian model, we derive equality constraints for the parameters of the observational and interventional distributions. Third, for the general continuous setting (possibly nonlinear or non-Gaussian), we parameterize the reduced causal model using normalizing flows, a flexible class of easily invertible nonlinear transformations. We perform a series of experiments on synthetic data and find that in several cases the number of interventional samples can be reduced when adding observational training samples without sacrificing accuracy.
In this paper, we study the learning of safe policies in the setting of reinforcement learning problems. This is, we aim to control a Markov Decision Process (MDP) of which we do not know the transition probabilities, but we have access to sample trajectories through experience. We define safety as the agent remaining in a desired safe set with high probability during the operation time. We therefore consider a constrained MDP where the constraints are probabilistic. Since there is no straightforward way to optimize the policy with respect to the probabilistic constraint in a reinforcement learning framework, we propose an ergodic relaxation of the problem. The advantages of the proposed relaxation are threefold. (i) The safety guarantees are maintained in the case of episodic tasks and they are kept up to a given time horizon for continuing tasks. (ii) The constrained optimization problem despite its non-convexity has arbitrarily small duality gap if the parametrization of the policy is rich enough. (iii) The gradients of the Lagrangian associated with the safe-learning problem can be easily computed using standard policy gradient results and stochastic approximation tools. Leveraging these advantages, we establish that primal-dual algorithms are able to find policies that are safe and optimal. We test the proposed approach in a navigation task in a continuous domain. The numerical results show that our algorithm is capable of dynamically adapting the policy to the environment and the required safety levels.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.
We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.