亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The analysis of variance (ANOVA) decomposition offers a systematic method to understand the interaction effects that contribute to a specific decision output. In this paper we introduce Neural-ANOVA, an approach to decompose neural networks into glassbox models using the ANOVA decomposition. Our approach formulates a learning problem, which enables rapid and closed-form evaluation of integrals over subspaces that appear in the calculation of the ANOVA decomposition. Finally, we conduct numerical experiments to illustrate the advantages of enhanced interpretability and model validation by a decomposition of the learned interaction effects.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 知識 (knowledge) · tuning · 最優化 · Machine Learning ·
2024 年 10 月 7 日

Bilevel optimization has recently attracted considerable attention due to its abundant applications in machine learning problems. However, existing methods rely on prior knowledge of problem parameters to determine stepsizes, resulting in significant effort in tuning stepsizes when these parameters are unknown. In this paper, we propose two novel tuning-free algorithms, D-TFBO and S-TFBO. D-TFBO employs a double-loop structure with stepsizes adaptively adjusted by the "inverse of cumulative gradient norms" strategy. S-TFBO features a simpler fully single-loop structure that updates three variables simultaneously with a theory-motivated joint design of adaptive stepsizes for all variables. We provide a comprehensive convergence analysis for both algorithms and show that D-TFBO and S-TFBO respectively require $O(\frac{1}{\epsilon})$ and $O(\frac{1}{\epsilon}\log^4(\frac{1}{\epsilon}))$ iterations to find an $\epsilon$-accurate stationary point, (nearly) matching their well-tuned counterparts using the information of problem parameters. Experiments on various problems show that our methods achieve performance comparable to existing well-tuned approaches, while being more robust to the selection of initial stepsizes. To the best of our knowledge, our methods are the first to completely eliminate the need for stepsize tuning, while achieving theoretical guarantees.

Polynomial multiplication is one of the fundamental operations in many applications, such as fully homomorphic encryption (FHE). However, the computational inefficiency stemming from polynomials with many large-bit coefficients poses a significant challenge for the practical implementation of FHE. The Number Theoretic Transform (NTT) has proven an effective tool in enhancing polynomial multiplication, but a fast and adaptable method for generating NTT accelerators is lacking. In this paper, we introduce HF-NTT, a novel NTT accelerator. HF-NTT efficiently handles polynomials of varying degrees and moduli, allowing for a balance between performance and hardware resources by adjusting the number of Processing Elements (PEs). Meanwhile, we introduce a data movement strategy that eliminates the need for bit-reversal operations, resolves different hazards, and reduces the clock cycles. Furthermore, Our accelerator includes a hardware-friendly modular multiplication design and a configurable PE capable of adapting its data path, resulting in a universal architecture. We synthesized and implemented prototype using Vivado 2022.2, and evaluated it on the Xilinx Virtex-7 FPGA platform. The results demonstrate significant improvements in Area-Time-Product (ATP) and processing speed for different polynomial degrees. In scenarios involving multi-modulus polynomial multiplication, our prototype consistently outperforms other designs in both ATP and latency metrics.

The attention mechanism is a fundamental component of the Transformer model, contributing to interactions among distinct tokens, in contrast to earlier feed-forward neural networks. In general, the attention scores are determined simply by the key-query products. However, this work's occasional trial (combining DAPE and NoPE) of including additional MLPs on attention scores without position encoding indicates that the classical key-query multiplication may limit the performance of Transformers. In this work, we conceptualize attention as a feature map and apply the convolution operator (for neighboring attention scores across different heads) to mimic the processing methods in computer vision. Specifically, the main contribution of this paper is identifying and interpreting the Transformer length extrapolation problem as a result of the limited expressiveness of the naive query and key dot product, and we successfully translate the length extrapolation issue into a well-understood feature map processing problem. The novel insight, which can be adapted to various attention-related models, reveals that the current Transformer architecture has the potential for further evolution. Extensive experiments demonstrate that treating attention as a feature map and applying convolution as a processing method significantly enhances Transformer performance.

Neural time-series analysis has traditionally focused on modeling data in the time domain, often with some approaches incorporating equivalent Fourier domain representations as auxiliary spectral features. In this work, we shift the main focus to frequency representations, modeling time-series data fully and directly in the Fourier domain. We introduce Neural Fourier Modelling (NFM), a compact yet powerful solution for time-series analysis. NFM is grounded in two key properties of the Fourier transform (FT): (i) the ability to model finite-length time series as functions in the Fourier domain, treating them as continuous-time elements in function space, and (ii) the capacity for data manipulation (such as resampling and timespan extension) within the Fourier domain. We reinterpret Fourier-domain data manipulation as frequency extrapolation and interpolation, incorporating this as a core learning mechanism in NFM, applicable across various tasks. To support flexible frequency extension with spectral priors and effective modulation of frequency representations, we propose two learning modules: Learnable Frequency Tokens (LFT) and Implicit Neural Fourier Filters (INFF). These modules enable compact and expressive modeling in the Fourier domain. Extensive experiments demonstrate that NFM achieves state-of-the-art performance on a wide range of tasks (forecasting, anomaly detection, and classification), including challenging time-series scenarios with previously unseen sampling rates at test time. Moreover, NFM is highly compact, requiring fewer than 40K parameters in each task, with time-series lengths ranging from 100 to 16K.

The Byzantine Agreement (BA) problem is a fundamental challenge in distributed systems, focusing on achieving reaching an agreement among parties, some of which may behave maliciously. With the rise of cryptocurrencies, there has been significant interest in developing atomic broadcast protocols, which facilitate agreement on a subset of parties' requests. However, these protocols often come with high communication complexity ($O(ln^2 + \lambda n^3 \log n)$, where $l$ is the bit length of the input, $n$ is the number of parties, and $\lambda$ represents the security parameter bit length). This can lead to inefficiency, especially when the requests across parties exhibit little variation, resulting in unnecessary resource consumption. In this paper, we introduce Slim-ABC, a novel atomic broadcast protocol that eliminates the $O(ln^2 + \lambda n^3 \log n)$ term associated with traditional atomic broadcast protocols. While Slim-ABC reduces the number of accepted requests, it significantly mitigates resource wastage, making it more efficient. The protocol leverages the asynchronous common subset and provable-broadcast mechanisms to achieve a communication complexity of $O(ln^2 + \lambda n^2)$. Despite the trade-off in accepted requests, Slim-ABC maintains robust security by allowing only a fraction ($f+1$) of parties to broadcast requests. We present an extensive efficiency analysis of Slim-ABC, evaluating its performance across key metrics such as message complexity, communication complexity, and time complexity. Additionally, we provide a rigorous security analysis, demonstrating that Slim-ABC satisfies the \textit{agreement}, \textit{validity}, and \textit{totality} properties of the asynchronous common subset protocol.

Given a high-dimensional covariate matrix and a response vector, ridge-regularized sparse linear regression selects a subset of features that explains the relationship between covariates and the response in an interpretable manner. To select the sparsity and robustness of linear regressors, techniques like k-fold cross-validation are commonly used for hyperparameter tuning. However, cross-validation substantially increases the computational cost of sparse regression as it requires solving many mixed-integer optimization problems (MIOs). Additionally, validation metrics often serve as noisy estimators of test set errors, with different hyperparameter combinations leading to models with different noise levels. Therefore, optimizing over these metrics is vulnerable to out-of-sample disappointment, especially in underdetermined settings. To improve upon this state of affairs, we make two key contributions. First, motivated by the generalization theory literature, we propose selecting hyperparameters that minimize a weighted sum of a cross-validation metric and a model's output stability, thus reducing the risk of poor out-of-sample performance. Second, we leverage ideas from the mixed-integer optimization literature to obtain computationally tractable relaxations of k-fold cross-validation metrics and the output stability of regressors, facilitating hyperparameter selection after solving fewer MIOs. These relaxations result in an efficient cyclic coordinate descent scheme, achieving lower validation errors than via traditional methods such as grid search. On synthetic datasets, our confidence adjustment procedure improves out-of-sample performance by 2%-5% compared to minimizing the k-fold error alone. On 13 real-world datasets, our confidence adjustment procedure reduces test set error by 2%, on average.

Facial analysis is a key component in a wide range of applications such as security, autonomous driving, entertainment, and healthcare. Despite the availability of various facial RGB datasets, the thermal modality, which plays a crucial role in life sciences, medicine, and biometrics, has been largely overlooked. To address this gap, we introduce the T-FAKE dataset, a new large-scale synthetic thermal dataset with sparse and dense landmarks. To facilitate the creation of the dataset, we propose a novel RGB2Thermal loss function, which enables the transfer of thermal style to RGB faces. By utilizing the Wasserstein distance between thermal and RGB patches and the statistical analysis of clinical temperature distributions on faces, we ensure that the generated thermal images closely resemble real samples. Using RGB2Thermal style transfer based on our RGB2Thermal loss function, we create the T-FAKE dataset, a large-scale synthetic thermal dataset of faces. Leveraging our novel T-FAKE dataset, probabilistic landmark prediction, and label adaptation networks, we demonstrate significant improvements in landmark detection methods on thermal images across different landmark conventions. Our models show excellent performance with both sparse 70-point landmarks and dense 478-point landmark annotations. Our code and models are available at //github.com/phflot/tfake.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

北京阿比特科技有限公司