亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blind face restoration (BFR) is important while challenging. Prior works prefer to exploit GAN-based frameworks to tackle this task due to the balance of quality and efficiency. However, these methods suffer from poor stability and adaptability to long-tail distribution, failing to simultaneously retain source identity and restore detail. We propose DiffBFR to introduce Diffusion Probabilistic Model (DPM) for BFR to tackle the above problem, given its superiority over GAN in aspects of avoiding training collapse and generating long-tail distribution. DiffBFR utilizes a two-step design, that first restores identity information from low-quality images and then enhances texture details according to the distribution of real faces. This design is implemented with two key components: 1) Identity Restoration Module (IRM) for preserving the face details in results. Instead of denoising from pure Gaussian random distribution with LQ images as the condition during the reverse process, we propose a novel truncated sampling method which starts from LQ images with part noise added. We theoretically prove that this change shrinks the evidence lower bound of DPM and then restores more original details. With theoretical proof, two cascade conditional DPMs with different input sizes are introduced to strengthen this sampling effect and reduce training difficulty in the high-resolution image generated directly. 2) Texture Enhancement Module (TEM) for polishing the texture of the image. Here an unconditional DPM, a LQ-free model, is introduced to further force the restorations to appear realistic. We theoretically proved that this unconditional DPM trained on pure HQ images contributes to justifying the correct distribution of inference images output from IRM in pixel-level space. Truncated sampling with fractional time step is utilized to polish pixel-level textures while preserving identity information.

相關內容

Image restoration involves recovering a high-quality clean image from its degraded version. Deep learning-based methods have significantly improved image restoration performance, however, they have limited generalization ability to different degradation types and levels. This restricts their real-world application since it requires training individual models for each specific degradation and knowing the input degradation type to apply the relevant model. We present a prompt-based learning approach, PromptIR, for All-In-One image restoration that can effectively restore images from various types and levels of degradation. In particular, our method uses prompts to encode degradation-specific information, which is then used to dynamically guide the restoration network. This allows our method to generalize to different degradation types and levels, while still achieving state-of-the-art results on image denoising, deraining, and dehazing. Overall, PromptIR offers a generic and efficient plugin module with few lightweight prompts that can be used to restore images of various types and levels of degradation with no prior information on the corruptions present in the image. Our code and pretrained models are available here: //github.com/va1shn9v/PromptIR

Three-dimensional microscopy is often limited by anisotropic spatial resolution, resulting in lower axial resolution than lateral resolution. Current State-of-The-Art (SoTA) isotropic reconstruction methods utilizing deep neural networks can achieve impressive super-resolution performance in fixed imaging settings. However, their generality in practical use is limited by degraded performance caused by artifacts and blurring when facing unseen anisotropic factors. To address these issues, we propose DiffuseIR, an unsupervised method for isotropic reconstruction based on diffusion models. First, we pre-train a diffusion model to learn the structural distribution of biological tissue from lateral microscopic images, resulting in generating naturally high-resolution images. Then we use low-axial-resolution microscopy images to condition the generation process of the diffusion model and generate high-axial-resolution reconstruction results. Since the diffusion model learns the universal structural distribution of biological tissues, which is independent of the axial resolution, DiffuseIR can reconstruct authentic images with unseen low-axial resolutions into a high-axial resolution without requiring re-training. The proposed DiffuseIR achieves SoTA performance in experiments on EM data and can even compete with supervised methods.

Motivated by recent advancements in text-to-image diffusion, we study erasure of specific concepts from the model's weights. While Stable Diffusion has shown promise in producing explicit or realistic artwork, it has raised concerns regarding its potential for misuse. We propose a fine-tuning method that can erase a visual concept from a pre-trained diffusion model, given only the name of the style and using negative guidance as a teacher. We benchmark our method against previous approaches that remove sexually explicit content and demonstrate its effectiveness, performing on par with Safe Latent Diffusion and censored training. To evaluate artistic style removal, we conduct experiments erasing five modern artists from the network and conduct a user study to assess the human perception of the removed styles. Unlike previous methods, our approach can remove concepts from a diffusion model permanently rather than modifying the output at the inference time, so it cannot be circumvented even if a user has access to model weights. Our code, data, and results are available at //erasing.baulab.info/

Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.

In response to the prevalent challenge of overfitting in deep neural networks, this paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning. We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function featuring an inter-group penalty. This experimental configuration allows for a detailed examination of model performance across similar (PlantNet) and dissimilar (ImageNet) domains, thereby enriching the generalizability of Convolutional Neural Network models. Remarkably, our approach demonstrates superior performance over models without regularization and those applying dropout regularization exclusively, enhancing accuracy by 5 to 22 percentage points. Moreover, when combined with dropout, the proposed approach improves generalization, securing state-of-the-art results for the UFOP-HVD challenge. The method also showcases efficiency with significantly smaller sample sizes, suggesting its broad applicability across a spectrum of related tasks. In addition, an interpretability approach is deployed to evaluate feature quality by analyzing class feature correlations within the network's convolutional layers. The findings of this study provide deeper insights into the efficacy of Simultaneous Learning, particularly concerning its interaction with the auxiliary and target datasets.

Although previous co-speech gesture generation methods are able to synthesize motions in line with speech content, it is still not enough to handle diverse and complicated motion distribution. The key challenges are: 1) the one-to-many nature between the speech content and gestures; 2) the correlation modeling between the body joints. In this paper, we present a novel framework (EMoG) to tackle the above challenges with denoising diffusion models: 1) To alleviate the one-to-many problem, we incorporate emotion clues to guide the generation process, making the generation much easier; 2) To model joint correlation, we propose to decompose the difficult gesture generation into two sub-problems: joint correlation modeling and temporal dynamics modeling. Then, the two sub-problems are explicitly tackled with our proposed Joint Correlation-aware transFormer (JCFormer). Through extensive evaluations, we demonstrate that our proposed method surpasses previous state-of-the-art approaches, offering substantial superiority in gesture synthesis.

Recent research has focused on using large language models (LLMs) to generate explanations for hate speech through fine-tuning or prompting. Despite the growing interest in this area, these generated explanations' effectiveness and potential limitations remain poorly understood. A key concern is that these explanations, generated by LLMs, may lead to erroneous judgments about the nature of flagged content by both users and content moderators. For instance, an LLM-generated explanation might inaccurately convince a content moderator that a benign piece of content is hateful. In light of this, we propose an analytical framework for examining hate speech explanations and conducted an extensive survey on evaluating such explanations. Specifically, we prompted GPT-3 to generate explanations for both hateful and non-hateful content, and a survey was conducted with 2,400 unique respondents to evaluate the generated explanations. Our findings reveal that (1) human evaluators rated the GPT-generated explanations as high quality in terms of linguistic fluency, informativeness, persuasiveness, and logical soundness, (2) the persuasive nature of these explanations, however, varied depending on the prompting strategy employed, and (3) this persuasiveness may result in incorrect judgments about the hatefulness of the content. Our study underscores the need for caution in applying LLM-generated explanations for content moderation. Code and results are available at //github.com/Social-AI-Studio/GPT3-HateEval.

Evidential deep learning, built upon belief theory and subjective logic, offers a principled and computationally efficient way to turn a deterministic neural network uncertainty-aware. The resultant evidential models can quantify fine-grained uncertainty using the learned evidence. To ensure theoretically sound evidential models, the evidence needs to be non-negative, which requires special activation functions for model training and inference. This constraint often leads to inferior predictive performance compared to standard softmax models, making it challenging to extend them to many large-scale datasets. To unveil the real cause of this undesired behavior, we theoretically investigate evidential models and identify a fundamental limitation that explains the inferior performance: existing evidential activation functions create zero evidence regions, which prevent the model to learn from training samples falling into such regions. A deeper analysis of evidential activation functions based on our theoretical underpinning inspires the design of a novel regularizer that effectively alleviates this fundamental limitation. Extensive experiments over many challenging real-world datasets and settings confirm our theoretical findings and demonstrate the effectiveness of our proposed approach.

We study a mean change point testing problem for high-dimensional data, with exponentially- or polynomially-decaying tails. In each case, depending on the $\ell_0$-norm of the mean change vector, we separately consider dense and sparse regimes. We characterise the boundary between the dense and sparse regimes under the above two tail conditions for the first time in the change point literature and propose novel testing procedures that attain optimal rates in each of the four regimes up to a poly-iterated logarithmic factor. By comparing with previous results under Gaussian assumptions, our results quantify the costs of heavy-tailedness on the fundamental difficulty of change point testing problems for high-dimensional data. To be specific, when the error vectors follow sub-Weibull distributions, a CUSUM-type statistic is shown to achieve a minimax testing rate up to $\sqrt{\log\log(8n)}$. When the error distributions have polynomially-decaying tails, admitting bounded $\alpha$-th moments for some $\alpha \geq 4$, we introduce a median-of-means-type test statistic that achieves a near-optimal testing rate in both dense and sparse regimes. In particular, in the sparse regime, we further propose a computationally-efficient test to achieve the exact optimality. Surprisingly, our investigation in the even more challenging case of $2 \leq \alpha < 4$, unveils a new phenomenon that the minimax testing rate has no sparse regime, i.e.\ testing sparse changes is information-theoretically as hard as testing dense changes. This phenomenon implies a phase transition of the minimax testing rates at $\alpha = 4$.

Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.

北京阿比特科技有限公司