Sophisticated cyber attacks present significant challenges for organizations in detecting and preventing such threats. To address this critical need for advanced defense mechanisms, we propose an Ensemble Defense System (EDS). An EDS is a cybersecurity framework aggregating multiple security tools designed to monitor and alert an organization during cyber attacks. The proposed EDS leverages a comprehensive range of Intrusion Detection System (IDS) capabilities by introducing a hybrid of signature-based IDS and anomaly-based IDS tools. It also incorporates Elasticsearch, an open-source Security Information and Event Management (SIEM) tool, to facilitate data analysis and interactive visualization of alerts generated from IDSs. The effectiveness of the EDS is evaluated through a payload from a bash script that executes various attacks, including port scanning, privilege escalation, and Denial-of-Service (DoS). The evaluation demonstrates the EDS's ability to detect diverse cyber attacks.
In the acceleration of deep neural network training, the GPU has become the mainstream platform. GPUs face substantial challenges on GNNs, such as workload imbalance and memory access irregularities, leading to underutilized hardware. Existing solutions such as PyG, DGL with cuSPARSE, and GNNAdvisor frameworks partially address these challenges but memory traffic is still significant. We argue that drastic performance improvements can only be achieved by the vertical optimization of algorithm and system innovations, rather than treating the speedup optimization as an "after-thought" (i.e., (i) given a GNN algorithm, designing an accelerator, or (ii) given hardware, mainly optimizing the GNN algorithm). In this paper, we present MaxK-GNN, an advanced high-performance GPU training system integrating algorithm and system innovation. (i) We introduce the MaxK nonlinearity and provide a theoretical analysis of MaxK nonlinearity as a universal approximator, and present the Compressed Balanced Sparse Row (CBSR) format, designed to store the data and index of the feature matrix after nonlinearity; (ii) We design a coalescing enhanced forward computation with row-wise product-based SpGEMM Kernel using CBSR for input feature matrix fetching and strategic placement of a sparse output accumulation buffer in shared memory; (iii) We develop an optimized backward computation with outer product-based and SSpMM Kernel. We conduct extensive evaluations of MaxK-GNN and report the end-to-end system run-time. Experiments show that MaxK-GNN system could approach the theoretical speedup limit according to Amdahl's law. We achieve comparable accuracy to SOTA GNNs, but at a significantly increased speed: 3.22/4.24 times speedup (vs. theoretical limits, 5.52/7.27 times) on Reddit compared to DGL and GNNAdvisor implementations.
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content. Beyond content creation, GAI has significant analytical abilities to learn complex data distribution, offering numerous opportunities to resolve security issues. In the realm of security from physical layer perspectives, traditional AI approaches frequently struggle, primarily due to their limited capacity to dynamically adjust to the evolving physical attributes of transmission channels and the complexity of contemporary cyber threats. This adaptability and analytical depth are precisely where GAI excels. Therefore, in this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks. We first emphasize the importance of advanced GAI models in this area, including Generative Adversarial Networks (GANs), Autoencoders (AEs), Variational Autoencoders (VAEs), and Diffusion Models (DMs). We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity. Furthermore, we also present future research directions focusing model improvements, multi-scenario deployment, resource-efficient optimization, and secure semantic communication, highlighting the multifaceted potential of GAI to address emerging challenges in secure physical layer communications and sensing.
With the rapid advancement of Large Language Models (LLMs), significant progress has been made in multi-agent applications. However, the complexities in coordinating agents' cooperation and LLMs' erratic performance pose notable challenges in developing robust and efficient multi-agent applications. To tackle these challenges, we propose AgentScope, a developer-centric multi-agent platform with message exchange as its core communication mechanism. Together with abundant syntactic tools, built-in resources, and user-friendly interactions, our communication mechanism significantly reduces the barriers to both development and understanding. Towards robust and flexible multi-agent application, AgentScope provides both built-in and customizable fault tolerance mechanisms while it is also armed with system-level supports for multi-modal data generation, storage and transmission. Additionally, we design an actor-based distribution framework, enabling easy conversion between local and distributed deployments and automatic parallel optimization without extra effort. With these features, AgentScope empowers developers to build applications that fully realize the potential of intelligent agents. We have released AgentScope at //github.com/modelscope/agentscope, and hope AgentScope invites wider participation and innovation in this fast-moving field.
This study addresses the challenge of inaccurate gradients in computing the empirical Fisher Information Matrix during neural network pruning. We introduce SWAP, a formulation of Entropic Wasserstein regression (EWR) for pruning, capitalizing on the geometric properties of the optimal transport problem. The ``swap'' of the commonly used linear regression with the EWR in optimization is analytically demonstrated to offer noise mitigation effects by incorporating neighborhood interpolation across data points with only marginal additional computational cost. The unique strength of SWAP is its intrinsic ability to balance noise reduction and covariance information preservation effectively. Extensive experiments performed on various networks and datasets show comparable performance of SWAP with state-of-the-art (SoTA) network pruning algorithms. Our proposed method outperforms the SoTA when the network size or the target sparsity is large, the gain is even larger with the existence of noisy gradients, possibly from noisy data, analog memory, or adversarial attacks. Notably, our proposed method achieves a gain of 6% improvement in accuracy and 8% improvement in testing loss for MobileNetV1 with less than one-fourth of the network parameters remaining.
Estimating the average treatment effect in social networks is challenging due to individuals influencing each other. One approach to address interference is ego cluster experiments, where each cluster consists of a central individual (ego) and its peers (alters). Clusters are randomized, and only the effects on egos are measured. In this work, we propose an improved framework for ego cluster experiments called ego group partition (EGP), which directly generates two groups and an ego sub-population instead of ego clusters. Under specific model assumptions, we propose two ego group partition algorithms. Compared to the original ego clustering algorithm, our algorithms produce more egos, yield smaller biases, and support parallel computation. The performance of our algorithms is validated through simulation and real-world case studies.
In recent years, temporal knowledge graph (TKG) reasoning has received significant attention. Most existing methods assume that all timestamps and corresponding graphs are available during training, which makes it difficult to predict future events. To address this issue, recent works learn to infer future events based on historical information. However, these methods do not comprehensively consider the latent patterns behind temporal changes, to pass historical information selectively, update representations appropriately and predict events accurately. In this paper, we propose the Historical Information Passing (HIP) network to predict future events. HIP network passes information from temporal, structural and repetitive perspectives, which are used to model the temporal evolution of events, the interactions of events at the same time step, and the known events respectively. In particular, our method considers the updating of relation representations and adopts three scoring functions corresponding to the above dimensions. Experimental results on five benchmark datasets show the superiority of HIP network, and the significant improvements on Hits@1 prove that our method can more accurately predict what is going to happen.
Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.
The rise of multimodal misinformation on social platforms poses significant challenges for individuals and societies. Its increased credibility and broader impact compared to textual misinformation make detection complex, requiring robust reasoning across diverse media types and profound knowledge for accurate verification. The emergence of Large Vision Language Model (LVLM) offers a potential solution to this problem. Leveraging their proficiency in processing visual and textual information, LVLM demonstrates promising capabilities in recognizing complex information and exhibiting strong reasoning skills. In this paper, we first investigate the potential of LVLM on multimodal misinformation detection. We find that even though LVLM has a superior performance compared to LLMs, its profound reasoning may present limited power with a lack of evidence. Based on these observations, we propose LEMMA: LVLM-Enhanced Multimodal Misinformation Detection with External Knowledge Augmentation. LEMMA leverages LVLM intuition and reasoning capabilities while augmenting them with external knowledge to enhance the accuracy of misinformation detection. Our method improves the accuracy over the top baseline LVLM by 7% and 13% on Twitter and Fakeddit datasets respectively.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.