Differential equation discovery, a machine learning subfield, is used to develop interpretable models, particularly in nature-related applications. By expertly incorporating the general parametric form of the equation of motion and appropriate differential terms, algorithms can autonomously uncover equations from data. This paper explores the prerequisites and tools for independent equation discovery without expert input, eliminating the need for equation form assumptions. We focus on addressing the challenge of assessing the adequacy of discovered equations when the correct equation is unknown, with the aim of providing insights for reliable equation discovery without prior knowledge of the equation form.
We study space--time isogeometric discretizations of the linear acoustic wave equation that use B-splines of arbitrary degree $p$, both in space and time. We propose a space--time variational formulation that is obtained by adding a non-consistent penalty term of order $2p+2$ to the bilinear form coming from integration by parts. This formulation, when discretized with tensor-product spline spaces with maximal regularity in time, is unconditionally stable: the mesh size in time is not constrained by the mesh size in space. We give extensive numerical evidence for the good stability, approximation, dissipation and dispersion properties of the stabilized isogeometric formulation, comparing against stabilized finite element schemes, for a range of wave propagation problems with constant and variable wave speed.
We present a reduced basis stochastic Galerkin method for partial differential equations with random inputs. In this method, the reduced basis methodology is integrated into the stochastic Galerkin method, resulting in a significant reduction in the cost of solving the Galerkin system. To reduce the main cost of matrix-vector manipulation involved in our reduced basis stochastic Galerkin approach, the secant method is applied to identify the number of reduced basis functions. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
Finding ground states of quantum many-body systems is known to be hard for both classical and quantum computers. As a result, when Nature cools a quantum system in a low-temperature thermal bath, the ground state cannot always be found efficiently. Instead, Nature finds a local minimum of the energy. In this work, we study the problem of finding local minima in quantum systems under thermal perturbations. While local minima are much easier to find than ground states, we show that finding a local minimum is computationally hard for classical computers, even when the task is to output a single-qubit observable at any local minimum. In contrast, we prove that a quantum computer can always find a local minimum efficiently using a thermal gradient descent algorithm that mimics the cooling process in Nature. To establish the classical hardness of finding local minima, we consider a family of two-dimensional Hamiltonians such that any problem solvable by polynomial-time quantum algorithms can be reduced to finding ground states of these Hamiltonians. We prove that for such Hamiltonians, all local minima are global minima. Therefore, assuming quantum computation is more powerful than classical computation, finding local minima is classically hard and quantumly easy.
The convergence of the first order Euler scheme and an approximative variant thereof, along with convergence rates, are established for rough differential equations driven by c\`adl\`ag paths satisfying a suitable criterion, namely the so-called Property (RIE), along time discretizations with vanishing mesh size. This property is then verified for almost all sample paths of Brownian motion, It\^o processes, L\'evy processes and general c\`adl\`ag semimartingales, as well as the driving signals of both mixed and rough stochastic differential equations, relative to various time discretizations. Consequently, we obtain pathwise convergence in p-variation of the Euler--Maruyama scheme for stochastic differential equations driven by these processes.
The nonlinear Poisson-Boltzmann equation (NPBE) is an elliptic partial differential equation used in applications such as protein interactions and biophysical chemistry (among many others). It describes the nonlinear electrostatic potential of charged bodies submerged in an ionic solution. The kinetic presence of the solvent molecules introduces randomness to the shape of a protein, and thus a more accurate model that incorporates these random perturbations of the domain is analyzed to compute the statistics of quantities of interest of the solution. When the parameterization of the random perturbations is high-dimensional, this calculation is intractable as it is subject to the curse of dimensionality. However, if the solution of the NPBE varies analytically with respect to the random parameters, the problem becomes amenable to techniques such as sparse grids and deep neural networks. In this paper, we show analyticity of the solution of the NPBE with respect to analytic perturbations of the domain by using the analytic implicit function theorem and the domain mapping method. Previous works have shown analyticity of solutions to linear elliptic equations but not for nonlinear problems. We further show how to derive \emph{a priori} bounds on the size of the region of analyticity. This method is applied to the trypsin molecule to demonstrate that the convergence rates of the quantity of interest are consistent with the analyticity result. Furthermore, the approach developed here is sufficiently general enough to be applied to other nonlinear problems in uncertainty quantification.
We derive and analyse well-posed boundary conditions for the linear shallow water wave equation. The analysis is based on the energy method and it identifies the number, location and form of the boundary conditions so that the initial boundary value problem is well-posed. A finite volume method is developed based on the summation-by-parts framework with the boundary conditions implemented weakly using penalties. Stability is proven by deriving a discrete energy estimate analogous to the continuous estimate. The continuous and discrete analysis covers all flow regimes. Numerical experiments are presented verifying the analysis.
In the present paper, we study a multipoint boundary value problem for a system of Fredholm integro-differenial equations by the method of parameterization. The case of a degenerate kernel is studied separately, for which we obtain well-posedness conditions and propose some algorithms to find approximate and numerical solutions to the problem. Then we establish necessary and sufficient conditions for the well-posedness of the multipoint problem for the system of Fredholm integro-differential equations and develop some algorithms for finding its approximate solutions. These algorithms are based on the solutions of an approximating problem for the system of integro-differential equations with degenerate kernel.
Effective application of mathematical models to interpret biological data and make accurate predictions often requires that model parameters are identifiable. Approaches to assess the so-called structural identifiability of models are well-established for ordinary differential equation models, yet there are no commonly adopted approaches that can be applied to assess the structural identifiability of the partial differential equation (PDE) models that are requisite to capture spatial features inherent to many phenomena. The differential algebra approach to structural identifiability has recently been demonstrated to be applicable to several specific PDE models. In this brief article, we present general methodology for performing structural identifiability analysis on partially observed linear reaction-advection-diffusion (RAD) PDE models. We show that the differential algebra approach can always, in theory, be applied to linear RAD models. Moreover, despite the perceived complexity introduced by the addition of advection and diffusion terms, identifiability of spatial analogues of non-spatial models cannot decrease structural identifiability. Finally, we show that our approach can also be applied to a class of non-linear PDE models that are linear in the unobserved variables, and conclude by discussing future possibilities and computational cost of performing structural identifiability analysis on more general PDE models in mathematical biology.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.