The recent development of chain-of-thought (CoT) decoding has enabled large language models (LLMs) to generate explicit logical reasoning paths for complex problem-solving. However, research indicates that these paths are not always deliberate and optimal. The tree-of-thought (ToT) method employs tree-searching to extensively explore the reasoning space and find better reasoning paths that CoT decoding might overlook. This deliberation, however, comes at the cost of significantly increased inference complexity. In this work, we demonstrate that fine-tuning LLMs leveraging the search tree constructed by ToT allows CoT to achieve similar or better performance, thereby avoiding the substantial inference burden. This is achieved through Chain of Preference Optimization (CPO), where LLMs are fine-tuned to align each step of the CoT reasoning paths with those of ToT using the inherent preference information in the tree-search process. Extensive experimental results show that CPO significantly improves LLM performance in solving a variety of complex problems, including question answering, fact verification, and arithmetic reasoning, demonstrating its effectiveness. Our code is available at //github.com/sail-sg/CPO.
Large language models (LLMs) frequently generate confident yet inaccurate responses, introducing significant risks for deployment in safety-critical domains. We present a novel approach to detecting model hallucination through systematic analysis of information flow across model layers when processing inputs with insufficient or ambiguous context. Our investigation reveals that hallucination manifests as usable information deficiencies in inter-layer transmissions. While existing approaches primarily focus on final-layer output analysis, we demonstrate that tracking cross-layer information dynamics ($\mathcal{L}$I) provides robust indicators of model reliability, accounting for both information gain and loss during computation. $\mathcal{L}$I improves model reliability by immediately integrating with universal LLMs without additional training or architectural modifications.
Large language models (LLMs) have shown superior capabilities in translating figurative language compared to neural machine translation (NMT) systems. However, the impact of different prompting methods and LLM-NMT combinations on idiom translation has yet to be thoroughly investigated. This paper introduces two parallel datasets of sentences containing idiomatic expressions for Persian$\rightarrow$English and English$\rightarrow$Persian translations, with Persian idioms sampled from our PersianIdioms resource, a collection of 2,200 idioms and their meanings. Using these datasets, we evaluate various open- and closed-source LLMs, NMT models, and their combinations. Translation quality is assessed through idiom translation accuracy and fluency. We also find that automatic evaluation methods like LLM-as-a-judge, BLEU and BERTScore are effective for comparing different aspects of model performance. Our experiments reveal that Claude-3.5-Sonnet delivers outstanding results in both translation directions. For English$\rightarrow$Persian, combining weaker LLMs with Google Translate improves results, while Persian$\rightarrow$English translations benefit from single prompts for simpler models and complex prompts for advanced ones.
Powerful large language models (LLMs) are increasingly expected to be deployed with lower computational costs, enabling their capabilities on resource-constrained devices. Post-training quantization (PTQ) has emerged as a star approach to achieve this ambition, with best methods compressing weights to less than 2 bit on average. In this paper, we propose Channel-Relaxed Vector Quantization (CRVQ), a novel technique that significantly improves the performance of PTQ baselines at the cost of only minimal additional bits. This state-of-the-art extreme compression method achieves its results through two key innovations: (1) carefully selecting and reordering a very small subset of critical weight channels, and (2) leveraging multiple codebooks to relax the constraint of critical channels. With our method, we demonstrate a 38.9% improvement over the current strongest sub-2-bit PTQ baseline, enabling nearer lossless 1-bit compression. Furthermore, our approach offers flexible customization of quantization bit-width and performance, providing a wider range of deployment options for diverse hardware platforms.
Large language models (LLMs) have demonstrated impressive capabilities in various tasks using the in-context learning (ICL) paradigm. However, their effectiveness is often compromised by inherent bias, leading to prompt brittleness, i.e., sensitivity to design settings such as example selection, order, and prompt formatting. Previous studies have addressed LLM bias through external adjustment of model outputs, but the internal mechanisms that lead to such bias remain unexplored. Our work delves into these mechanisms, particularly investigating how feedforward neural networks (FFNs) and attention heads result in the bias of LLMs. By Interpreting the contribution of individual FFN vectors and attention heads, we identify the biased LLM components that skew LLMs' prediction toward specific labels. To mitigate these biases, we introduce UniBias, an inference-only method that effectively identifies and eliminates biased FFN vectors and attention heads. Extensive experiments across 12 NLP datasets demonstrate that UniBias significantly enhances ICL performance and alleviates prompt brittleness of LLMs.
Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.
We formalize the problem of prompt compression for large language models (LLMs) and present a framework to unify token-level prompt compression methods which create hard prompts for black-box models. We derive the distortion-rate function for this setup as a linear program, and provide an efficient algorithm to compute this fundamental limit via the dual of the linear program. Using the distortion-rate function as the baseline, we study the performance of existing compression schemes on a synthetic dataset consisting of prompts generated from a Markov chain, natural language queries, and their respective answers. Our empirical analysis demonstrates the criticality of query-aware prompt compression, where the compressor has knowledge of the downstream task/query for the black-box LLM. We show that there is a large gap between the performance of current prompt compression methods and the optimal strategy, and propose Adaptive QuerySelect, a query-aware, variable-rate adaptation of a prior work to close the gap. We extend our experiments to a small natural language dataset to further confirm our findings on our synthetic dataset.
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.