亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Evaluation of intervention in a multi-agent system, e.g., when humans should intervene in autonomous driving systems and when a player should pass to teammates for a good shot, is challenging in various engineering and scientific fields. Estimating the individual treatment effect (ITE) using counterfactual long-term prediction is practical to evaluate such interventions. However, most of the conventional frameworks did not consider the time-varying complex structure of multi-agent relationships and covariate counterfactual prediction. This may sometimes lead to erroneous assessments of ITE and interpretation problems. Here we propose an interpretable, counterfactual recurrent network in multi-agent systems to estimate the effect of the intervention. Our model leverages graph variational recurrent neural networks and theory-based computation with domain knowledge for the ITE estimation framework based on long-term prediction of multi-agent covariates and outcomes, which can confirm under the circumstances under which the intervention is effective. On simulated models of an automated vehicle and biological agents with time-varying confounders, we show that our methods achieved lower estimation errors in counterfactual covariates and the most effective treatment timing than the baselines. Furthermore, using real basketball data, our methods performed realistic counterfactual predictions and evaluated the counterfactual passes in shot scenarios.

相關內容

Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.

In this paper we show that conditional graph entropy can be formulated as an alternating minimization problem, which gives rise to a simple iterative algorithm for numerically computing (conditional) graph entropy. The systematic study of alternating minimization problems was initiated by Csisz\'ar and Tusn\'ady. We apply this theory to conditional graph entropy, which was shown to be the minimal rate for a natural functional compression problem with side information at the receiver. This also leads to a new formula which shows that conditional graph entropy is part of a more general framework: the solution of an optimization problem over a convex corner. In the special case of graph entropy (i.e., unconditioned version) this was known due to Csisz\'ar, K\"orner, Lov\'asz, Marton, and Simonyi. In that case the role of the convex corner was played by the so-called vertex packing polytope. In the conditional version it is a more intricate convex body but the function to minimize is the same.

Counterfactuals are often described as 'retrospective,' focusing on hypothetical alternatives to a realized past. This description relates to an often implicit assumption about the structure and stability of exogenous variables in the system being modeled -- an assumption that is reasonable in many settings where counterfactuals are used. In this work, we consider cases where we might reasonably make a different assumption about exogenous variables, namely, that the exogenous noise terms of each unit do exhibit some unit-specific structure and/or stability. This leads us to a different use of counterfactuals -- a 'forward-looking' rather than 'retrospective' counterfactual. We introduce "counterfactual treatment choice," a type of treatment choice problem that motivates using forward-looking counterfactuals. We then explore how mismatches between interventional versus forward-looking counterfactual approaches to treatment choice, consistent with different assumptions about exogenous noise, can lead to counterintuitive results.

Conditional effect estimation has great scientific and policy importance because interventions may impact subjects differently depending on their characteristics. Previous work has focused primarily on estimating the conditional average treatment effect (CATE), which considers the difference between counterfactual mean outcomes under interventions when all subjects receive treatment and all subjects receive control. However, these interventions may be unrealistic in certain policy scenarios. Furthermore, identification of the CATE requires that all subjects have a non-zero probability of receiving treatment, or positivity, which may be unrealistic in practice. In this paper, we propose conditional effects based on incremental propensity score interventions, which are stochastic interventions under which the odds of treatment are multiplied by some user-specified factor. These effects do not require positivity for identification and can be better suited for modeling real-world policies in which people cannot be forced to treatment. We develop a projection estimator, the "Projection-Learner", and a flexible nonparametric estimator, the "I-DR-Learner", which can each estimate all the conditional effects we propose. We derive model-agnostic error guarantees for both estimators, and show that both satisfy a form of double robustness, whereby the Projection-Learner attains parametric efficiency and the I-DR-Learner attains oracle efficiency under weak convergence conditions on the nuisance function estimators. We then propose a summary of treatment effect heterogeneity, the variance of a conditional derivative, and derive a nonparametric estimator for the effect that also satisfies a form of double robustness. Finally, we demonstrate our estimators with an analysis of the the effect of ICU admission on mortality using a dataset from the (SPOT)light prospective cohort study.

Various types of Multi-Agent Reinforcement Learning (MARL) methods have been developed, assuming that agents' policies are based on true states. Recent works have improved the robustness of MARL under uncertainties from the reward, transition probability, or other partners' policies. However, in real-world multi-agent systems, state estimations may be perturbed by sensor measurement noise or even adversaries. Agents' policies trained with only true state information will deviate from optimal solutions when facing adversarial state perturbations during execution. MARL under adversarial state perturbations has limited study. Hence, in this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to study the fundamental properties of MARL under state uncertainties. We prove that the optimal agent policy and the robust Nash equilibrium do not always exist for an SAMG. Instead, we define the solution concept, robust agent policy, of the proposed SAMG under adversarial state perturbations, where agents want to maximize the worst-case expected state value. We then design a gradient descent ascent-based robust MARL algorithm to learn the robust policies for the MARL agents. Our experiments show that adversarial state perturbations decrease agents' rewards for several baselines from the existing literature, while our algorithm outperforms baselines with state perturbations and significantly improves the robustness of the MARL policies under state uncertainties.

Structural data well exists in Web applications, such as social networks in social media, citation networks in academic websites, and threads data in online forums. Due to the complex topology, it is difficult to process and make use of the rich information within such data. Graph Neural Networks (GNNs) have shown great advantages on learning representations for structural data. However, the non-transparency of the deep learning models makes it non-trivial to explain and interpret the predictions made by GNNs. Meanwhile, it is also a big challenge to evaluate the GNN explanations, since in many cases, the ground-truth explanations are unavailable. In this paper, we take insights of Counterfactual and Factual (CF^2) reasoning from causal inference theory, to solve both the learning and evaluation problems in explainable GNNs. For generating explanations, we propose a model-agnostic framework by formulating an optimization problem based on both of the two casual perspectives. This distinguishes CF^2 from previous explainable GNNs that only consider one of them. Another contribution of the work is the evaluation of GNN explanations. For quantitatively evaluating the generated explanations without the requirement of ground-truth, we design metrics based on Counterfactual and Factual reasoning to evaluate the necessity and sufficiency of the explanations. Experiments show that no matter ground-truth explanations are available or not, CF^2 generates better explanations than previous state-of-the-art methods on real-world datasets. Moreover, the statistic analysis justifies the correlation between the performance on ground-truth evaluation and our proposed metrics.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

Recent years have witnessed significant advances in technologies and services in modern network applications, including smart grid management, wireless communication, cybersecurity as well as multi-agent autonomous systems. Considering the heterogeneous nature of networked entities, emerging network applications call for game-theoretic models and learning-based approaches in order to create distributed network intelligence that responds to uncertainties and disruptions in a dynamic or an adversarial environment. This paper articulates the confluence of networks, games and learning, which establishes a theoretical underpinning for understanding multi-agent decision-making over networks. We provide an selective overview of game-theoretic learning algorithms within the framework of stochastic approximation theory, and associated applications in some representative contexts of modern network systems, such as the next generation wireless communication networks, the smart grid and distributed machine learning. In addition to existing research works on game-theoretic learning over networks, we highlight several new angles and research endeavors on learning in games that are related to recent developments in artificial intelligence. Some of the new angles extrapolate from our own research interests. The overall objective of the paper is to provide the reader a clear picture of the strengths and challenges of adopting game-theoretic learning methods within the context of network systems, and further to identify fruitful future research directions on both theoretical and applied studies.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司