In this paper, we propose a novel method for joint entity and relation extraction from unstructured text by framing it as a conditional sequence generation problem. In contrast to conventional generative information extraction models that are left-to-right token-level generators, our approach is \textit{span-based}. It generates a linearized graph where nodes represent text spans and edges represent relation triplets. Our method employs a transformer encoder-decoder architecture with pointing mechanism on a dynamic vocabulary of spans and relation types. Our model can capture the structural characteristics and boundaries of entities and relations through span representations while simultaneously grounding the generated output in the original text thanks to the pointing mechanism. Evaluation on benchmark datasets validates the effectiveness of our approach, demonstrating competitive results. Code is available at //github.com/urchade/ATG.
This study proposes a novel method for forecasting a scalar variable based on high-dimensional predictors that is applicable to various data distributions. In the literature, one of the popular approaches for forecasting with many predictors is to use factor models. However, these traditional methods are ineffective when the data exhibit non-Gaussian characteristics such as skewness or heavy tails. In this study, we newly utilize a quantile factor model to extract quantile factors that describe specific quantiles of the data beyond the mean factor. We then build a quantile-based forecast model using the estimated quantile factors at different quantile levels as predictors. Finally, the predicted values at the various quantile levels are combined into a single forecast as a weighted average with weights determined by a Markov chain based on past trends of the target variable. The main idea of the proposed method is to incorporate a quantile approach to a forecasting method to handle non-Gaussian characteristics effectively. The performance of the proposed method is evaluated through a simulation study and real data analysis of PM2.5 data in South Korea, where the proposed method outperforms other existing methods in most cases.
In this paper, we aim to develop an open-source, multilingual language model for medicine, that the benefits a wider, linguistically diverse audience from different regions. In general, we present the contribution from the following aspects: first, for multilingual medical-specific adaptation, we construct a new multilingual medical corpus, that contains approximately 25.5B tokens encompassing 6 main languages, termed as MMedC, that enables auto-regressive training for existing general LLMs. second, to monitor the development of multilingual LLMs in medicine, we propose a new multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench; third, we have assessed a number of popular, opensource large language models (LLMs) on our benchmark, along with those further auto-regressive trained on MMedC, as a result, our final model, termed as MMedLM 2, with only 7B parameters, achieves superior performance compared to all other open-source models, even rivaling GPT-4 on MMedBench. We will make the resources publicly available, including code, model weights, and datasets.
In this paper, the problem of joint transmission and computation resource allocation for a multi-user probabilistic semantic communication (PSC) network is investigated. In the considered model, users employ semantic information extraction techniques to compress their large-sized data before transmitting them to a multi-antenna base station (BS). Our model represents large-sized data through substantial knowledge graphs, utilizing shared probability graphs between the users and the BS for efficient semantic compression. The resource allocation problem is formulated as an optimization problem with the objective of maximizing the sum of equivalent rate of all users, considering total power budget and semantic resource limit constraints. The computation load considered in the PSC network is formulated as a non-smooth piecewise function with respect to the semantic compression ratio. To tackle this non-convex non-smooth optimization challenge, a three-stage algorithm is proposed where the solutions for the receive beamforming matrix of the BS, transmit power of each user, and semantic compression ratio of each user are obtained stage by stage. Numerical results validate the effectiveness of our proposed scheme.
Recently, two-dimensional (2D) array codes have been found to have applications in wireless communication.In this paper, we propose direct construction of 2D complete complementary codes (2D-CCCs) with arbitrary array size and flexible set size using multivariable functions (MVF). The Peak-to-mean envelope power ratio (PMEPR) properties of row and column sequences of the constructed 2D-CCC arrays are investigated. The proposed construction generalizes many of the existing state-of-the-art such as Golay complementary pair (GCP), one-dimensional (1D)-CCC, 2D Golay complementary array set (2D-GCAS), and 2D-CCC with better parameters compared to the existing work.
This paper presents a novel approach to task grouping in Multitask Learning (MTL), advancing beyond existing methods by addressing key theoretical and practical limitations. Unlike prior studies, our approach offers a more theoretically grounded method that does not rely on restrictive assumptions for constructing transfer gains. We also propose a flexible mathematical programming formulation which can accommodate a wide spectrum of resource constraints, thus enhancing its versatility. Experimental results across diverse domains, including computer vision datasets, combinatorial optimization benchmarks and time series tasks, demonstrate the superiority of our method over extensive baselines, validating its effectiveness and general applicability in MTL.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax