Court transcripts and judgments are rich repositories of legal knowledge, detailing the intricacies of cases and the rationale behind judicial decisions. The extraction of key information from these documents provides a concise overview of a case, crucial for both legal experts and the public. With the advent of large language models (LLMs), automatic information extraction has become increasingly feasible and efficient. This paper presents a comprehensive study on the application of GPT-4, a large language model, for automatic information extraction from UK Employment Tribunal (UKET) cases. We meticulously evaluated GPT-4's performance in extracting critical information with a manual verification process to ensure the accuracy and relevance of the extracted data. Our research is structured around two primary extraction tasks: the first involves a general extraction of eight key aspects that hold significance for both legal specialists and the general public, including the facts of the case, the claims made, references to legal statutes, references to precedents, general case outcomes and corresponding labels, detailed order and remedies and reasons for the decision. The second task is more focused, aimed at analysing three of those extracted features, namely facts, claims and outcomes, in order to facilitate the development of a tool capable of predicting the outcome of employment law disputes. Through our analysis, we demonstrate that LLMs like GPT-4 can obtain high accuracy in legal information extraction, highlighting the potential of LLMs in revolutionising the way legal information is processed and utilised, offering significant implications for legal research and practice.
We study initial value problems having dynamics ruled by discontinuous ordinary differential equations with the property of possessing a unique solution. We identify a precise class of such systems that we call solvable intitial value problems and we prove that for this class of problems the unique solution can always be obtained analytically via transfinite recursion. We present several examples including a nontrivial one whose solution yields, at an integer time, a real encoding of the halting set for Turing machines; therefore showcasing that the behavior of solvable systems is related to ordinal Turing computations.
Spatial join processing techniques that identify intersections between complex geometries (e.g.,polygons) commonly follow a two-step filter-and-refine pipeline; the filter step evaluates the query predicate on the minimum bounding rectangles (MBRs) of objects and the refinement step eliminates false positives by applying the query on the exact geometries. We propose a raster intervals approximation of object geometries and introduce a powerful intermediate step in pipeline. In a preprocessing phase, our method (i) rasterizes each object geometry using a fine grid, (ii) models groups of nearby cells that intersect the polygon as an interval, and (iii) encodes each interval by a bitstring that captures the overlap of each cell in it with the polygon. Going one step further, we improve our approach to approximate each object by two sets of intervals that succintly capture the raster cells which (i) intersect with the object and (ii) are fully contained in the object. Using this representation, we show that we can verify whether two polygons intersect by a sequence of joins between the interval sets that take linear time. Our approximations can effectively be compressed and can be customized for use on partitioned data and polygons of varying sizes, rasterized at different granularities. Finally, we propose a novel algorithm that computes the interval approximation of a polygon without fully rasterizing it first, rendering the computation of approximations orders of magnitude faster. Experiments on real data demonstrate the effectiveness and efficiency of our proposal over previous work.
Large language model pre-training has become increasingly expensive, with most practitioners relying on scaling laws to allocate compute budgets for model size and training tokens, commonly referred to as Compute-Optimal or Chinchilla Optimal. In this paper, we hypothesize a new scaling law that suggests model performance depends mostly on the amount of compute spent for transformer-based models, independent of the specific allocation to model size and dataset size. Using this unified scaling law, we predict that (a) for inference efficiency, training should prioritize smaller model sizes and larger training datasets, and (b) assuming the exhaustion of available web datasets, scaling the model size might be the only way to further improve model performance.
Loss functions and sample mining strategies are essential components in deep metric learning algorithms. However, the existing loss function or mining strategy often necessitate the incorporation of additional hyperparameters, notably the threshold, which defines whether the sample pair is informative. The threshold provides a stable numerical standard for determining whether to retain the pairs. It is a vital parameter to reduce the redundant sample pairs participating in training. Nonetheless, finding the optimal threshold can be a time-consuming endeavor, often requiring extensive grid searches. Because the threshold cannot be dynamically adjusted in the training stage, we should conduct plenty of repeated experiments to determine the threshold. Therefore, we introduce a novel approach for adjusting the thresholds associated with both the loss function and the sample mining strategy. We design a static Asymmetric Sample Mining Strategy (ASMS) and its dynamic version Adaptive Tolerance ASMS (AT-ASMS), tailored for sample mining methods. ASMS utilizes differentiated thresholds to address the problems (too few positive pairs and too many redundant negative pairs) caused by only applying a single threshold to filter samples. AT-ASMS can adaptively regulate the ratio of positive and negative pairs during training according to the ratio of the currently mined positive and negative pairs. This meta-learning-based threshold generation algorithm utilizes a single-step gradient descent to obtain new thresholds. We combine these two threshold adjustment algorithms to form the Dual Dynamic Threshold Adjustment Strategy (DDTAS). Experimental results show that our algorithm achieves competitive performance on CUB200, Cars196, and SOP datasets.
In statistical mechanics, computing the partition function is generally difficult. An approximation method using a variational autoregressive network (VAN) has been proposed recently. This approach offers the advantage of directly calculating the generation probabilities while obtaining a significantly large number of samples. The present study introduces a novel approximation method that employs samples derived from quantum annealing machines in conjunction with VAN, which are empirically assumed to adhere to the Gibbs-Boltzmann distribution. When applied to the finite-size Sherrington-Kirkpatrick model, the proposed method demonstrates enhanced accuracy compared to the traditional VAN approach and other approximate methods, such as the widely utilized naive mean field.
Measuring similarity between RDF graphs is essential for various applications, including knowledge discovery, semantic web analysis, and recommender systems. However, traditional similarity measures often treat all properties equally, potentially overlooking the varying importance of different properties in different contexts. Consequently, exploring weighted property approaches for RDF graph similarity measure presents an intriguing avenue for investigation. Therefore, in this paper, we propose a weighted property approach for RDF graph similarity measure to address this limitation. Our approach incorporates the relative importance of properties into the similarity calculation, enabling a more nuanced and context-aware measures of similarity. We evaluate our approach through a comprehensive experimental study on an RDF graph dataset in the vehicle domain. Our results demonstrate that the proposed approach achieves promising accuracy and effectively reflects the perceived similarity between RDF graphs.
Aligning large language models (LLMs) with human values, particularly in the face of complex and stealthy jailbreak attacks, presents a formidable challenge. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis ($\mathbb{IA}$). The principle behind this is to trigger LLMs' inherent self-correct and improve ability through a two-stage process: 1) essential intention analysis, and 2) policy-aligned response. Notably, $\mathbb{IA}$ is an inference-only method, thus could enhance the safety of LLMs without compromising their helpfulness. Extensive experiments on varying jailbreak benchmarks across ChatGLM, LLaMA2, Vicuna, MPT, DeepSeek, and GPT-3.5 show that $\mathbb{IA}$ could consistently and significantly reduce the harmfulness in responses (averagely -53.1% attack success rate) and maintain the general helpfulness. Encouragingly, with the help of our $\mathbb{IA}$, Vicuna-7B even outperforms GPT-3.5 in terms of attack success rate. Further analyses present some insights into how our method works. To facilitate reproducibility, we release our code and scripts at: //github.com/alphadl/SafeLLM_with_IntentionAnalysis.
The reduced cost and computational and calibration requirements of monocular cameras make them ideal positioning sensors for mobile robots, albeit at the expense of any meaningful depth measurement. Solutions proposed by some scholars to this localization problem involve fusing pose estimates from convolutional neural networks (CNNs) with pose estimates from geometric constraints on motion to generate accurate predictions of robot trajectories. However, the distribution of attitude estimation based on CNN is not uniform, resulting in certain translation problems in the prediction of robot trajectories. This paper proposes improving these CNN-based pose estimates by propagating a SE(3) uniform distribution driven by a particle filter. The particles utilize the same motion model used by the CNN, while updating their weights using CNN-based estimates. The results show that while the rotational component of pose estimation does not consistently improve relative to CNN-based estimation, the translational component is significantly more accurate. This factor combined with the superior smoothness of the filtered trajectories shows that the use of particle filters significantly improves the performance of CNN-based localization algorithms.
The increasing concerns of knowledge transfer and data privacy challenge the traditional gather-and-analyse paradigm in networks. Specifically, the intelligent orchestration of Virtual Network Functions (VNFs) requires understanding and profiling the resource consumption. However, profiling all kinds of VNFs is time-consuming. It is important to consider transferring the well-profiled VNF knowledge to other lack-profiled VNF types while keeping data private. To this end, this paper proposes a Federated Transfer Component Analysis (FTCA) method between the source and target VNFs. FTCA first trains Generative Adversarial Networks (GANs) based on the source VNF profiling data, and the trained GANs model is sent to the target VNF domain. Then, FTCA realizes federated domain adaptation by using the generated source VNF data and less target VNF profiling data, while keeping the raw data locally. Experiments show that the proposed FTCA can effectively predict the required resources for the target VNF. Specifically, the RMSE index of the regression model decreases by 38.5% and the R-squared metric advances up to 68.6%.
The developments that language models have provided in fulfilling almost all kinds of tasks have attracted the attention of not only researchers but also the society and have enabled them to become products. There are commercially successful language models available. However, users may prefer open-source language models due to cost, data privacy, or regulations. Yet, despite the increasing number of these models, there is no comprehensive comparison of their performance for Turkish. This study aims to fill this gap in the literature. A comparison is made among seven selected language models based on their contextual learning and question-answering abilities. Turkish datasets for contextual learning and question-answering were prepared, and both automatic and human evaluations were conducted. The results show that for question-answering, continuing pretraining before fine-tuning with instructional datasets is more successful in adapting multilingual models to Turkish and that in-context learning performances do not much related to question-answering performances.