Edge computing enables data processing and storage closer to where the data are created. Given the largely distributed compute environment and the significantly dispersed data distribution, there are increasing demands of data sharing and collaborative processing on the edge. Since data shuffling can dominate the overall execution time of collaborative processing jobs, considering the limited power supply and bandwidth resource in edge environments, it is crucial and valuable to reduce the communication overhead across edge devices. Compared with data compression, compact data structures (CDS) seem to be more suitable in this case, for the capability of allowing data to be queried, navigated, and manipulated directly in a compact form. However, the relevant work about applying CDS to edge computing generally focuses on the intuitive benefit from reduced data size, while few discussions about the challenges are given, not to mention empirical investigations into real-world edge use cases. This research highlights the challenges, opportunities, and potential scenarios of CDS implementation in edge computing. Driven by the use case of shuffling-intensive data analytics, we proposed a three-layer architecture for CDS-aided data processing and particularly studied the feasibility and efficiency of the CDS layer. We expect this research to foster conjoint research efforts on CDS-aided edge data analytics and to make wider practical impacts.
The analysis of brain signals holds considerable importance in enhancing our comprehension of diverse learning techniques and cognitive mechanisms. Game-based learning is increasingly being recognized for its interactive and engaging educational approach. A pilot study of twelve participants divided into experimental and control groups was conducted to understand its effects on cognitive processes. Both groups were provided with the same contents regarding the basic structure of the graph. The participants in the experimental group engaged in a quiz-based game, while those in the control group watched a pre-recorded video. Functional Near-Infrared Spectroscopy (fNIRS) was employed to acquire cerebral signals, and a series of pre and post-tests were administered. The findings of our study indicate that the group engaged in the game activity displayed elevated levels of oxygenated hemoglobin compared to the group involved in watching videos. Conversely, the deoxygenated hemoglobin levels remained relatively consistent across both groups throughout the learning process. The aforementioned findings suggest that the use of game-based learning has a substantial influence on cognitive processes. Furthermore, it is evident that both the game and video groups exhibited higher neural activity in the Lateral Prefrontal cortex (PFC). The oxygenated hemoglobin ratio demonstrates that the game group had 2.33 times more neural processing in the Lateral PFC than the video group. This data is further supported by the knowledge gain analysis, which indicates that the game-based approach resulted in a 47.74% higher knowledge gain than the video group, as calculated from the difference in pre-and post-test scores.
The challenges expected for the next era of the Large Hadron Collider (LHC), both in terms of storage and computing resources, provide LHC experiments with a strong motivation for evaluating ways of rethinking their computing models at many levels. Great efforts have been put into optimizing the computing resource utilization for the data analysis, which leads both to lower hardware requirements and faster turnaround for physics analyses. In this scenario, the Compact Muon Solenoid (CMS) collaboration is involved in several activities aimed at benchmarking different solutions for running High Energy Physics (HEP) analysis workflows. A promising solution is evolving software towards more user-friendly approaches featuring a declarative programming model and interactive workflows. The computing infrastructure should keep up with this trend by offering on the one side modern interfaces, and on the other side hiding the complexity of the underlying environment, while efficiently leveraging the already deployed grid infrastructure and scaling toward opportunistic resources like public cloud or HPC centers. This article presents the first example of using the ROOT RDataFrame technology to exploit such next-generation approaches for a production-grade CMS physics analysis. A new analysis facility is created to offer users a modern interactive web interface based on JupyterLab that can leverage HTCondor-based grid resources on different geographical sites. The physics analysis is converted from a legacy iterative approach to the modern declarative approach offered by RDataFrame and distributed over multiple computing nodes. The new scenario offers not only an overall improved programming experience, but also an order of magnitude speedup increase with respect to the previous approach.
Weak alignment of requirements engineering (RE) with verification and validation (VV) may lead to problems in delivering the required products in time with the right quality. For example, weak communication of requirements changes to testers may result in lack of verification of new requirements and incorrect verification of old invalid requirements, leading to software quality problems, wasted effort and delays. However, despite the serious implications of weak alignment research and practice both tend to focus on one or the other of RE or VV rather than on the alignment of the two. We have performed a multi-unit case study to gain insight into issues around aligning RE and VV by interviewing 30 practitioners from 6 software developing companies, involving 10 researchers in a flexible research process for case studies. The results describe current industry challenges and practices in aligning RE with VV, ranging from quality of the individual RE and VV activities, through tracing and tools, to change control and sharing a common understanding at strategy, goal and design level. The study identified that human aspects are central, i.e. cooperation and communication, and that requirements engineering practices are a critical basis for alignment. Further, the size of an organisation and its motivation for applying alignment practices, e.g. external enforcement of traceability, are variation factors that play a key role in achieving alignment. Our results provide a strategic roadmap for practitioners improvement work to address alignment challenges. Furthermore, the study provides a foundation for continued research to improve the alignment of RE with VV.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.
Unmanned aerial vehicle (UAV) swarm enabled edge computing is envisioned to be promising in the sixth generation wireless communication networks due to their wide application sensories and flexible deployment. However, most of the existing works focus on edge computing enabled by a single or a small scale UAVs, which are very different from UAV swarm-enabled edge computing. In order to facilitate the practical applications of UAV swarm-enabled edge computing, the state of the art research is presented in this article. The potential applications, architectures and implementation considerations are illustrated. Moreover, the promising enabling technologies for UAV swarm-enabled edge computing are discussed. Furthermore, we outline challenges and open issues in order to shed light on the future research directions.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.