亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study investigates the impact of machine learning models on the generation of counterfactual explanations by conducting a benchmark evaluation over three different types of models: decision-tree (fully transparent, interpretable, white-box model), a random forest (a semi-interpretable, grey-box model), and a neural network (a fully opaque, black-box model). We tested the counterfactual generation process using four algorithms (DiCE, WatcherCF, prototype, and GrowingSpheresCF) in the literature in five different datasets (COMPAS, Adult, German, Diabetes, and Breast Cancer). Our findings indicate that: (1) Different machine learning models have no impact on the generation of counterfactual explanations; (2) Counterfactual algorithms based uniquely on proximity loss functions are not actionable and will not provide meaningful explanations; (3) One cannot have meaningful evaluation results without guaranteeing plausibility in the counterfactual generation process. Algorithms that do not consider plausibility in their internal mechanisms will lead to biased and unreliable conclusions if evaluated with the current state-of-the-art metrics; (4) A qualitative analysis is strongly recommended (together with a quantitative analysis) to ensure a robust analysis of counterfactual explanations and the potential identification of biases.

相關內容

Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository. Their adoption, however, is so far limited to tasks that can be reliably evaluated in an automatic manner. This work introduces GENIE, an extensible human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks. GENIE automatically posts leaderboard submissions to crowdsourcing platforms asking human annotators to evaluate them on various axes (e.g., correctness, conciseness, fluency) and compares their answers to various automatic metrics. We introduce several datasets in English to GENIE, representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension. We provide formal granular evaluation metrics and identify areas for future research. We make GENIE publicly available and hope that it will spur progress in language generation models as well as their automatic and manual evaluation.

This study is devoted to two of the oldest known manuscripts in which the oeuvre of the medieval mystical author Hadewijch has been preserved: Brussels, KBR, 2879-2880 (ms. A) and Brussels, KBR, 2877-2878 (ms. B). On the basis of codicological and contextual arguments, it is assumed that the scribe who produced B used A as an exemplar. While the similarities in both layout and content between the two manuscripts are striking, the present article seeks to identify the differences. After all, regardless of the intention to produce a copy that closely follows the exemplar, subtle linguistic variation is apparent. Divergences relate to spelling conventions, but also to the way in which words are abbreviated (and the extent to which abbreviations occur). The present study investigates the spelling profiles of the scribes who produced mss. A and B in a computational way. In the first part of this study, we will present both manuscripts in more detail, after which we will consider prior research carried out on scribal profiling. The current study both builds and expands on Kestemont (2015). Next, we outline the methodology used to analyse and measure the degree of scribal appropriation that took place when ms. B was copied off the exemplar ms. A. After this, we will discuss the results obtained, focusing on the scribal variation that can be found both at the level of individual words and n-grams. To this end, we use machine learning to identify the most distinctive features that separate manuscript A from B. Finally, we look at possible diachronic trends in the appropriation by B's scribe of his exemplar. We argue that scribal takeovers in the exemplar impacts the practice of the copying scribe, while transitions to a different content matter cause little to no effect.

Misinformation emerges in times of uncertainty when credible information is limited. This is challenging for NLP-based fact-checking as it relies on counter-evidence, which may not yet be available. Despite increasing interest in automatic fact-checking, it is still unclear if automated approaches can realistically refute harmful real-world misinformation. Here, we contrast and compare NLP fact-checking with how professional fact-checkers combat misinformation in the absence of counter-evidence. In our analysis, we show that, by design, existing NLP task definitions for fact-checking cannot refute misinformation as professional fact-checkers do for the majority of claims. We then define two requirements that the evidence in datasets must fulfill for realistic fact-checking: It must be (1) sufficient to refute the claim and (2) not leaked from existing fact-checking articles. We survey existing fact-checking datasets and find that all of them fail to satisfy both criteria. Finally, we perform experiments to demonstrate that models trained on a large-scale fact-checking dataset rely on leaked evidence, which makes them unsuitable in real-world scenarios. Taken together, we show that current NLP fact-checking cannot realistically combat real-world misinformation because it depends on unrealistic assumptions about counter-evidence in the data.

Despite impressive successes, deep reinforcement learning (RL) systems still fall short of human performance on generalization to new tasks and environments that differ from their training. As a benchmark tailored for studying RL generalization, we introduce Avalon, a set of tasks in which embodied agents in highly diverse procedural 3D worlds must survive by navigating terrain, hunting or gathering food, and avoiding hazards. Avalon is unique among existing RL benchmarks in that the reward function, world dynamics, and action space are the same for every task, with tasks differentiated solely by altering the environment; its 20 tasks, ranging in complexity from eat and throw to hunt and navigate, each create worlds in which the agent must perform specific skills in order to survive. This setup enables investigations of generalization within tasks, between tasks, and to compositional tasks that require combining skills learned from previous tasks. Avalon includes a highly efficient simulator, a library of baselines, and a benchmark with scoring metrics evaluated against hundreds of hours of human performance, all of which are open-source and publicly available. We find that standard RL baselines make progress on most tasks but are still far from human performance, suggesting Avalon is challenging enough to advance the quest for generalizable RL.

The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the best predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is the best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.

The use of machine learning (ML) based techniques has become increasingly popular in the field of bioacoustics over the last years. Fundamental requirements for the successful application of ML based techniques are curated, agreed upon, high-quality datasets and benchmark tasks to be learned on a given dataset. However, the field of bioacoustics so far lacks such public benchmarks which cover multiple tasks and species to measure the performance of ML techniques in a controlled and standardized way and that allows for benchmarking newly proposed techniques to existing ones. Here, we propose BEANS (the BEnchmark of ANimal Sounds), a collection of bioacoustics tasks and public datasets, specifically designed to measure the performance of machine learning algorithms in the field of bioacoustics. The benchmark proposed here consists of two common tasks in bioacoustics: classification and detection. It includes 12 datasets covering various species, including birds, land and marine mammals, anurans, and insects. In addition to the datasets, we also present the performance of a set of standard ML methods as the baseline for task performance. The benchmark and baseline code is made publicly available at \url{//github.com/earthspecies/beans} in the hope of establishing a new standard dataset for ML-based bioacoustic research.

In recent years, Graph Neural Networks have reported outstanding performance in tasks like community detection, molecule classification and link prediction. However, the black-box nature of these models prevents their application in domains like health and finance, where understanding the models' decisions is essential. Counterfactual Explanations (CE) provide these understandings through examples. Moreover, the literature on CE is flourishing with novel explanation methods which are tailored to graph learning. In this survey, we analyse the existing Graph Counterfactual Explanation methods, by providing the reader with an organisation of the literature according to a uniform formal notation for definitions, datasets, and metrics, thus, simplifying potential comparisons w.r.t to the method advantages and disadvantages. We discussed seven methods and sixteen synthetic and real datasets providing details on the possible generation strategies. We highlight the most common evaluation strategies and formalise nine of the metrics used in the literature. We first introduce the evaluation framework GRETEL and how it is possible to extend and use it while providing a further dimension of comparison encompassing reproducibility aspects. Finally, we provide a discussion on how counterfactual explanation interplays with privacy and fairness, before delving into open challenges and future works.

While AI algorithms have shown remarkable success in various fields, their lack of transparency hinders their application to real-life tasks. Although explanations targeted at non-experts are necessary for user trust and human-AI collaboration, the majority of explanation methods for AI are focused on developers and expert users. Counterfactual explanations are local explanations that offer users advice on what can be changed in the input for the output of the black-box model to change. Counterfactuals are user-friendly and provide actionable advice for achieving the desired output from the AI system. While extensively researched in supervised learning, there are few methods applying them to reinforcement learning (RL). In this work, we explore the reasons for the underrepresentation of a powerful explanation method in RL. We start by reviewing the current work in counterfactual explanations in supervised learning. Additionally, we explore the differences between counterfactual explanations in supervised learning and RL and identify the main challenges that prevent adoption of methods from supervised in reinforcement learning. Finally, we redefine counterfactuals for RL and propose research directions for implementing counterfactuals in RL.

It has been a long time that computer architecture and systems are optimized to enable efficient execution of machine learning (ML) algorithms or models. Now, it is time to reconsider the relationship between ML and systems, and let ML transform the way that computer architecture and systems are designed. This embraces a twofold meaning: the improvement of designers' productivity, and the completion of the virtuous cycle. In this paper, we present a comprehensive review of work that applies ML for system design, which can be grouped into two major categories, ML-based modelling that involves predictions of performance metrics or some other criteria of interest, and ML-based design methodology that directly leverages ML as the design tool. For ML-based modelling, we discuss existing studies based on their target level of system, ranging from the circuit level to the architecture/system level. For ML-based design methodology, we follow a bottom-up path to review current work, with a scope of (micro-)architecture design (memory, branch prediction, NoC), coordination between architecture/system and workload (resource allocation and management, data center management, and security), compiler, and design automation. We further provide a future vision of opportunities and potential directions, and envision that applying ML for computer architecture and systems would thrive in the community.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

北京阿比特科技有限公司