亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Contrary to the use of genetic programming, the neural network approach to symbolic regression can scale well with high input dimension and leverage gradient methods for faster equation searching. Common ways of constraining expression complexity have relied on multistage pruning methods with fine-tuning, but these often lead to significant performance loss. In this work, we propose SymbolNet, a neural network approach to symbolic regression in a novel framework that enables dynamic pruning of model weights, input features, and mathematical operators in a single training, where both training loss and expression complexity are optimized simultaneously. We introduce a sparsity regularization term per pruning type, which can adaptively adjust its own strength and lead to convergence to a target sparsity level. In contrast to most existing symbolic regression methods that cannot efficiently handle datasets with more than $O$(10) inputs, we demonstrate the effectiveness of our model on the LHC jet tagging task (16 inputs), MNIST (784 inputs), and SVHN (3072 inputs).

相關內容

Recurrent neural networks (RNNs) have fast inference and scale efficiently on long sequences, but they are difficult to train and hard to scale. We propose Hawk, an RNN with gated linear recurrences, and Griffin, a hybrid model that mixes gated linear recurrences with local attention. Hawk exceeds the reported performance of Mamba on downstream tasks, while Griffin matches the performance of Llama-2 despite being trained on over 6 times fewer tokens. We also show that Griffin can extrapolate on sequences significantly longer than those seen during training. Our models match the hardware efficiency of Transformers during training, and during inference they have lower latency and significantly higher throughput. We scale Griffin up to 14B parameters, and explain how to shard our models for efficient distributed training.

The ability of machine learning systems to learn continually is hindered by catastrophic forgetting, the tendency of neural networks to overwrite existing knowledge when learning a new task. Continual learning methods alleviate this problem through regularization, parameter isolation, or rehearsal, but they are typically evaluated on benchmarks comprising only a handful of tasks. In contrast, humans are able to learn continually in dynamic, open-world environments, effortlessly achieving one-shot memorization of unfamiliar objects and reliably recognizing them under various transformations. To make progress towards closing this gap, we introduce Infinite dSprites, a parsimonious tool for creating continual classification and disentanglement benchmarks of arbitrary length and with full control over generative factors. We show that over a sufficiently long time horizon, the performance of all major types of continual learning methods deteriorates on this simple benchmark. Thus, Infinite dSprites highlights an important aspect of continual learning that has not received enough attention so far: given a finite modelling capacity and an arbitrarily long learning horizon, efficient learning requires memorizing class-specific information and accumulating knowledge about general mechanisms. In a simple setting with direct supervision on the generative factors, we show how learning class-agnostic transformations offers a way to circumvent catastrophic forgetting and improve classification accuracy over time. Our approach sets the stage for continual learning over hundreds of tasks with explicit control over memorization and forgetting, emphasizing open-set classification and one-shot generalization.

As an effective alternative to the direct fine-tuning on target tasks in specific languages, cross-lingual transfer addresses the challenges of limited training data by decoupling ''task ability'' and ''language ability'' by fine-tuning on the target task in the source language and another selected task in the target language, respectively. However, they fail to fully separate the task ability from the source language or the language ability from the chosen task. In this paper, we acknowledge the mutual reliance between task ability and language ability and direct our attention toward the gap between the target language and the source language on tasks. As the gap removes the impact of tasks, we assume that it remains consistent across tasks. Based on this assumption, we propose a new cross-lingual transfer method called $\texttt{AdaMergeX}$ that utilizes adaptive adapter merging. By introducing a reference task, we can determine that the divergence of adapters fine-tuned on the reference task in both languages follows the same distribution as the divergence of adapters fine-tuned on the target task in both languages. Hence, we can obtain target adapters by combining the other three adapters. Furthermore, we propose a structure-adaptive adapter merging method. Our empirical results demonstrate that our approach yields new and effective cross-lingual transfer, outperforming existing methods across all settings.

Recent findings reveal that over-parameterized deep neural networks, trained beyond zero training-error, exhibit a distinctive structural pattern at the final layer, termed as Neural-collapse (NC). These results indicate that the final hidden-layer outputs in such networks display minimal within-class variations over the training set. While existing research extensively investigates this phenomenon under cross-entropy loss, there are fewer studies focusing on its contrastive counterpart, supervised contrastive (SC) loss. Through the lens of NC, this paper employs an analytical approach to study the solutions derived from optimizing the SC loss. We adopt the unconstrained features model (UFM) as a representative proxy for unveiling NC-related phenomena in sufficiently over-parameterized deep networks. We show that, despite the non-convexity of SC loss minimization, all local minima are global minima. Furthermore, the minimizer is unique (up to a rotation). We prove our results by formalizing a tight convex relaxation of the UFM. Finally, through this convex formulation, we delve deeper into characterizing the properties of global solutions under label-imbalanced training data.

Social networks are often associated with rich side information, such as texts and images. While numerous methods have been developed to identify communities from pairwise interactions, they usually ignore such side information. In this work, we study an extension of the Stochastic Block Model (SBM), a widely used statistical framework for community detection, that integrates vectorial edges covariates: the Vectorial Edges Covariates Stochastic Block Model (VEC-SBM). We propose a novel algorithm based on iterative refinement techniques and show that it optimally recovers the latent communities under the VEC-SBM. Furthermore, we rigorously assess the added value of leveraging edge's side information in the community detection process. We complement our theoretical results with numerical experiments on synthetic and semi-synthetic data.

Multimodal pretraining has emerged as an effective strategy for the trinity of goals of representation learning in autonomous robots: 1) extracting both local and global task progression information; 2) enforcing temporal consistency of visual representation; 3) capturing trajectory-level language grounding. Most existing methods approach these via separate objectives, which often reach sub-optimal solutions. In this paper, we propose a universal unified objective that can simultaneously extract meaningful task progression information from image sequences and seamlessly align them with language instructions. We discover that via implicit preferences, where a visual trajectory inherently aligns better with its corresponding language instruction than mismatched pairs, the popular Bradley-Terry model can transform into representation learning through proper reward reparameterizations. The resulted framework, DecisionNCE, mirrors an InfoNCE-style objective but is distinctively tailored for decision-making tasks, providing an embodied representation learning framework that elegantly extracts both local and global task progression features, with temporal consistency enforced through implicit time contrastive learning, while ensuring trajectory-level instruction grounding via multimodal joint encoding. Evaluation on both simulated and real robots demonstrates that DecisionNCE effectively facilitates diverse downstream policy learning tasks, offering a versatile solution for unified representation and reward learning. Project Page: //2toinf.github.io/DecisionNCE/

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司