We present HAAR, a new strand-based generative model for 3D human hairstyles. Specifically, based on textual inputs, HAAR produces 3D hairstyles that could be used as production-level assets in modern computer graphics engines. Current AI-based generative models take advantage of powerful 2D priors to reconstruct 3D content in the form of point clouds, meshes, or volumetric functions. However, by using the 2D priors, they are intrinsically limited to only recovering the visual parts. Highly occluded hair structures can not be reconstructed with those methods, and they only model the ''outer shell'', which is not ready to be used in physics-based rendering or simulation pipelines. In contrast, we propose a first text-guided generative method that uses 3D hair strands as an underlying representation. Leveraging 2D visual question-answering (VQA) systems, we automatically annotate synthetic hair models that are generated from a small set of artist-created hairstyles. This allows us to train a latent diffusion model that operates in a common hairstyle UV space. In qualitative and quantitative studies, we demonstrate the capabilities of the proposed model and compare it to existing hairstyle generation approaches.
We present EfficientViT-SAM, a new family of accelerated segment anything models. We retain SAM's lightweight prompt encoder and mask decoder while replacing the heavy image encoder with EfficientViT. For the training, we begin with the knowledge distillation from the SAM-ViT-H image encoder to EfficientViT. Subsequently, we conduct end-to-end training on the SA-1B dataset. Benefiting from EfficientViT's efficiency and capacity, EfficientViT-SAM delivers 48.9x measured TensorRT speedup on A100 GPU over SAM-ViT-H without sacrificing performance. Our code and pre-trained models are released at //github.com/mit-han-lab/efficientvit.
Decoding of Low-Density Parity Check (LDPC) codes can be viewed as a special case of XOR-SAT problems, for which low-computational complexity bit-flipping algorithms have been proposed in the literature. However, a performance gap exists between the bit-flipping LDPC decoding algorithms and the benchmark LDPC decoding algorithms, such as the Sum-Product Algorithm (SPA). In this paper, we propose an XOR-SAT solver using log-sum-exponential functions and demonstrate its advantages for LDPC decoding. This is then approximated using the Margin Propagation formulation to attain a low-complexity LDPC decoder. The proposed algorithm uses soft information to decide the bit-flips that maximize the number of parity check constraints satisfied over an optimization function. The proposed solver can achieve results that are within $0.1$dB of the Sum-Product Algorithm for the same number of code iterations. It is also at least 10x lesser than other Gradient-Descent Bit Flipping decoding algorithms, which are also bit-flipping algorithms based on optimization functions. The approximation using the Margin Propagation formulation does not require any multipliers, resulting in significantly lower computational complexity than other soft-decision Bit-Flipping LDPC decoders.
We introduce GEOTACT, a robotic manipulation method capable of retrieving objects buried in granular media. This is a challenging task due to the need to interact with granular media, and doing so based exclusively on tactile feedback, since a buried object can be completely hidden from vision. Tactile feedback is in itself challenging in this context, due to ubiquitous contact with the surrounding media, and the inherent noise level induced by the tactile readings. To address these challenges, we use a learning method trained end-to-end with simulated sensor noise. We show that our problem formulation leads to the natural emergence of learned pushing behaviors that the manipulator uses to reduce uncertainty and funnel the object to a stable grasp despite spurious and noisy tactile readings. We also introduce a training curriculum that enables learning these behaviors in simulation, followed by zero-shot transfer to real hardware. To the best of our knowledge, GEOTACT is the first method to reliably retrieve a number of different objects from a granular environment, doing so on real hardware and with integrated tactile sensing. Videos and additional information can be found at //jxu.ai/geotact.
Software Engineering (SE) Pre-trained Language Models (PLMs), such as CodeBERT, are pre-trained on large code corpora, and their learned knowledge has shown success in transferring into downstream tasks (e.g., code clone detection) through the fine-tuning of PLMs. In Natural Language Processing (NLP), an alternative in transferring the knowledge of PLMs is explored through the use of adapter, a compact and parameter efficient module that is inserted into a PLM. Although the use of adapters has shown promising results in many NLP-based downstream tasks, their application and exploration in SE-based downstream tasks are limited. Here, we study the knowledge transfer using adapters on multiple down-stream tasks including cloze test, code clone detection, and code summarization. These adapters are trained on code corpora and are inserted into a PLM that is pre-trained on English corpora or code corpora. We called these PLMs as NL-PLM and C-PLM, respectively. We observed an improvement in results using NL-PLM over a PLM that does not have adapters, and this suggested that adapters can transfer and utilize useful knowledge from NL-PLM to SE tasks. The results are sometimes on par with or exceed the results of C-PLM; while being more efficient in terms of the number of parameters and training time. Interestingly, adapters inserted into a C-PLM generally yield better results than a traditional fine-tuned C-PLM. Our results open new directions to build more compact models for SE tasks.
We consider the problem of model selection in a high-dimensional sparse linear regression model under privacy constraints. We propose a differentially private best subset selection method with strong utility properties by adopting the well-known exponential mechanism for selecting the best model. We propose an efficient Metropolis-Hastings algorithm and establish that it enjoys polynomial mixing time to its stationary distribution. Furthermore, we also establish approximate differential privacy for the final estimates of the Metropolis-Hastings random walk using its mixing property. Finally, we perform some illustrative experiments that show the strong utility of our algorithm.
Vision-Language (VL) pre-trained models have shown their superiority on many multimodal tasks. However, the adversarial robustness of such models has not been fully explored. Existing approaches mainly focus on exploring the adversarial robustness under the white-box setting, which is unrealistic. In this paper, we aim to investigate a new yet practical task to craft image and text perturbations using pre-trained VL models to attack black-box fine-tuned models on different downstream tasks. Towards this end, we propose VLATTACK to generate adversarial samples by fusing perturbations of images and texts from both single-modal and multimodal levels. At the single-modal level, we propose a new block-wise similarity attack (BSA) strategy to learn image perturbations for disrupting universal representations. Besides, we adopt an existing text attack strategy to generate text perturbations independent of the image-modal attack. At the multimodal level, we design a novel iterative cross-search attack (ICSA) method to update adversarial image-text pairs periodically, starting with the outputs from the single-modal level. We conduct extensive experiments to attack five widely-used VL pre-trained models for six tasks. Experimental results show that VLATTACK achieves the highest attack success rates on all tasks compared with state-of-the-art baselines, which reveals a blind spot in the deployment of pre-trained VL models. Source codes can be found at //github.com/ericyinyzy/VLAttack.
Explainable AI (XAI) aids in deciphering 'black-box' models. While several methods have been proposed and evaluated primarily in the image domain, the exploration of explainability in the text domain remains a growing research area. In this paper, we delve into the applicability of XAI methods for the text domain. In this context, the 'Similarity Difference and Uniqueness' (SIDU) XAI method, recognized for its superior capability in localizing entire salient regions in image-based classification is extended to textual data. The extended method, SIDU-TXT, utilizes feature activation maps from 'black-box' models to generate heatmaps at a granular, word-based level, thereby providing explanations that highlight contextually significant textual elements crucial for model predictions. Given the absence of a unified standard for assessing XAI methods, this study applies a holistic three-tiered comprehensive evaluation framework: Functionally-Grounded, Human-Grounded and Application-Grounded, to assess the effectiveness of the proposed SIDU-TXT across various experiments. We find that, in sentiment analysis task of a movie review dataset, SIDU-TXT excels in both functionally and human-grounded evaluations, demonstrating superior performance through quantitative and qualitative analyses compared to benchmarks like Grad-CAM and LIME. In the application-grounded evaluation within the sensitive and complex legal domain of asylum decision-making, SIDU-TXT and Grad-CAM demonstrate comparable performances, each with its own set of strengths and weaknesses. However, both methods fall short of entirely fulfilling the sophisticated criteria of expert expectations, highlighting the imperative need for additional research in XAI methods suitable for such domains.
Parameter Efficient Fine-Tuning (PEFT) is an alternate choice to full fine-tuning a language model. Though PEFT methods are used in natural language domain widely, there are limited studies on using PEFT for language models that are pre-trained on code and comment datasets (i.e., code-LMs). Previous research has also shown that code summarization, a task that intends to generate natural description of the given code snippet automatically and is known to benefit the program comprehension, benefits from multilingual fine-tuning approach. In multilingual fine-tuning, the code-LM is fine-tuned on a dataset consisting of different programming languages. AdapterFusion is a specific PEFT approach that aims to extract and compose the latent knowledge from multiple (language) adapters for a downstream task. However, our experiments reveal that the AdapterFusion still learns from the same language, not taking advantage of other programming languages. Therefore, we change the architecture and propose AdvFusion, a PEFT approach that enforces the model to first learn from other programming languages, and then pay attention to the language of the target task. Therefore, the AdvFusion emphasizes the knowledge transfer among different programming languages, as stated in the multilingual fine-tuning. Our results on the CodeSearchNet dataset using two code-LMs, show that Adapters, AdapterFusion, and our proposed AdvFusion can achieve results on-par with or higher than the full fine-tuning models for code summarization and method name prediction. Notably, the number of trainable parameters are 123x less and the training time is reduced by ~30%. AdvFusion exhibits a notable enhancement compared to AdapterFusion, showcasing a 0.9 to 1.7-point increase in BLEU-4 scores specifically for Ruby, JavaScript, and Go.
Automated Aerial Triangulation (AAT), aiming to restore image pose and reconstruct sparse points simultaneously, plays a pivotal role in earth observation. With its rich research heritage spanning several decades in photogrammetry, AAT has evolved into a fundamental process widely applied in large-scale Unmanned Aerial Vehicle (UAV) based mapping. Despite its advancements, classic AAT methods still face challenges like low efficiency and limited robustness. This paper introduces DeepAAT, a deep learning network designed specifically for AAT of UAV imagery. DeepAAT considers both spatial and spectral characteristics of imagery, enhancing its capability to resolve erroneous matching pairs and accurately predict image poses. DeepAAT marks a significant leap in AAT's efficiency, ensuring thorough scene coverage and precision. Its processing speed outpaces incremental AAT methods by hundreds of times and global AAT methods by tens of times while maintaining a comparable level of reconstruction accuracy. Additionally, DeepAAT's scene clustering and merging strategy facilitate rapid localization and pose determination for large-scale UAV images, even under constrained computing resources. The experimental results demonstrate DeepAAT's substantial improvements over conventional AAT methods, highlighting its potential in the efficiency and accuracy of UAV-based 3D reconstruction tasks. To benefit the photogrammetry society, the code of DeepAAT will be released at: //github.com/WHU-USI3DV/DeepAAT.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.