亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Perhaps the most widely used form of code documentation is function header comments. We performed a large-scale survey of 367 developers to catalog their expectations from such documentation and to chronicle actual practice. Paradoxically, we found that developers appreciate the value of header comments and estimate that they are worth the investment in time, but nevertheless they tend not to write such documentation in their own code. Reasons for not writing header comments vary from the belief that code should be self-documenting to concern that documentation will not be kept up-to-date. A possible outcome of this situation is that developers may evade requirements to write documentation by using templates to generate worthless comments that do not provide any real information. We define a simple metric for information-less documentation based on its similarity to the function signature. Applying this to 21,140 files in GitHub Python projects shows that most functions are undocumented, but when header comments are written they typically do contain additional information beyond the function signature.

相關內容

The ability of Large Language Models (LLMs) to process and generate coherent text is markedly weakened when the number of input tokens exceeds their pretraining length. Given the expensive overhead of finetuning large-scale models with longer sequences, we propose Dual Chunk Attention (DCA), which enables Llama2 70B to support context windows of more than 100k tokens without continual training. By decomposing the attention computation for long sequences into chunk-based modules, DCA manages to effectively capture the relative positional information of tokens within the same chunk (Intra-Chunk) and across distinct chunks (Inter-Chunk), as well as integrates seamlessly with Flash Attention. In addition to its impressive extrapolation capability, DCA achieves performance on practical long-context tasks that is comparable to or even better than that of finetuned models. When compared with proprietary models, our training-free 70B model attains 94% of the performance of gpt-3.5-16k, indicating it is a viable open-source alternative. All code and data used in this work are released at \url{//github.com/HKUNLP/ChunkLlama}.

We introduce a framework for benchmarking optimizers according to multiple criteria over various test functions. Based on a recently introduced union-free generic depth function for partial orders/rankings, it fully exploits the ordinal information and allows for incomparability. Our method describes the distribution of all partial orders/rankings, avoiding the notorious shortcomings of aggregation. This permits to identify test functions that produce central or outlying rankings of optimizers and to assess the quality of benchmarking suites.

Automated disinformation generation is often listed as an important risk associated with large language models (LLMs). The theoretical ability to flood the information space with disinformation content might have dramatic consequences for societies around the world. This paper presents a comprehensive study of the disinformation capabilities of the current generation of LLMs to generate false news articles in the English language. In our study, we evaluated the capabilities of 10 LLMs using 20 disinformation narratives. We evaluated several aspects of the LLMs: how good they are at generating news articles, how strongly they tend to agree or disagree with the disinformation narratives, how often they generate safety warnings, etc. We also evaluated the abilities of detection models to detect these articles as LLM-generated. We conclude that LLMs are able to generate convincing news articles that agree with dangerous disinformation narratives.

Constrained maximization of submodular functions poses a central problem in combinatorial optimization. In many realistic scenarios, a number of agents need to maximize multiple submodular objectives over the same ground set. We study such a setting, where the different solutions must be disjoint, and thus, questions of fairness arise. Inspired from the fair division literature, we suggest a simple round-robin protocol, where agents are allowed to build their solutions one item at a time by taking turns. Unlike what is typical in fair division, however, the prime goal here is to provide a fair algorithmic environment; each agent is allowed to use any algorithm for constructing their respective solutions. We show that just by following simple greedy policies, agents have solid guarantees for both monotone and non-monotone objectives, and for combinatorial constraints as general as $p$-systems (which capture cardinality and matroid intersection constraints). In the monotone case, our results include approximate EF1-type guarantees and their implications in fair division may be of independent interest. Further, although following a greedy policy may not be optimal in general, we show that consistently performing better than that is computationally hard.

Blurring mean shift (BMS) algorithm, a variant of the mean shift algorithm, is a kernel-based iterative method for data clustering, where data points are clustered according to their convergent points via iterative blurring. In this paper, we analyze convergence properties of the BMS algorithm by leveraging its interpretation as an optimization procedure, which is known but has been underutilized in existing convergence studies. Whereas existing results on convergence properties applicable to multi-dimensional data only cover the case where all the blurred data point sequences converge to a single point, this study provides a convergence guarantee even when those sequences can converge to multiple points, yielding multiple clusters. This study also shows that the convergence of the BMS algorithm is fast by further leveraging geometrical characterization of the convergent points.

Stein variational gradient descent (SVGD) is a prominent particle-based variational inference method used for sampling a target distribution. SVGD has attracted interest for application in machine-learning techniques such as Bayesian inference. In this paper, we propose novel trainable algorithms that incorporate a deep-learning technique called deep unfolding,into SVGD. This approach facilitates the learning of the internal parameters of SVGD, thereby accelerating its convergence speed. To evaluate the proposed trainable SVGD algorithms, we conducted numerical simulations of three tasks: sampling a one-dimensional Gaussian mixture, performing Bayesian logistic regression, and learning Bayesian neural networks. The results show that our proposed algorithms exhibit faster convergence than the conventional variants of SVGD.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司