Physical-layer authentication is a popular alternative to the conventional key-based authentication for internet of things (IoT) devices due to their limited computational capacity and battery power. However, this approach has limitations due to poor robustness under channel fluctuations, reconciliation overhead, and no clear safeguard distance to ensure the secrecy of the generated authentication keys. In this regard, we propose a novel, secure, and lightweight continuous authentication scheme for IoT device authentication. Our scheme utilizes the inherent properties of the IoT devices transmission model as its source for seed generation and device authentication. Specifically, our proposed scheme provides continuous authentication by checking the access time slots and spreading sequences of the IoT devices instead of repeatedly generating and verifying shared keys. Due to this, access to a coherent key is not required in our proposed scheme, resulting in the concealment of the seed information from attackers. Our proposed authentication scheme for IoT devices demonstrates improved performance compared to the benchmark schemes relying on physical-channel. Our empirical results find a near threefold decrease in misdetection rate of illegitimate devices and close to zero false alarm rate in various system settings with varied numbers of active devices up to 200 and signal-to-noise ratio from 0 dB to 30 dB. Our proposed authentication scheme also has a lower computational complexity of at least half the computational cost of the benchmark schemes based on support vector machine and binary hypothesis testing in our studies. This further corroborates the practicality of our scheme for IoT deployments.
Data augmentation is a common practice to help generalization in the procedure of deep model training. In the context of physiological time series classification, previous research has primarily focused on label-invariant data augmentation methods. However, another class of augmentation techniques (\textit{i.e., Mixup}) that emerged in the computer vision field has yet to be fully explored in the time series domain. In this study, we systematically review the mix-based augmentations, including mixup, cutmix, and manifold mixup, on six physiological datasets, evaluating their performance across different sensory data and classification tasks. Our results demonstrate that the three mix-based augmentations can consistently improve the performance on the six datasets. More importantly, the improvement does not rely on expert knowledge or extensive parameter tuning. Lastly, we provide an overview of the unique properties of the mix-based augmentation methods and highlight the potential benefits of using the mix-based augmentation in physiological time series data.
The non-dominated sorting genetic algorithm II (NSGA-II) is the most intensively used multi-objective evolutionary algorithm (MOEA) in real-world applications. However, in contrast to several simple MOEAs analyzed also via mathematical means, no such study exists for the NSGA-II so far. In this work, we show that mathematical runtime analyses are feasible also for the NSGA-II. As particular results, we prove that with a population size four times larger than the size of the Pareto front, the NSGA-II with two classic mutation operators and four different ways to select the parents satisfies the same asymptotic runtime guarantees as the SEMO and GSEMO algorithms on the basic OneMinMax and LeadingOnesTrailingZeros benchmarks. However, if the population size is only equal to the size of the Pareto front, then the NSGA-II cannot efficiently compute the full Pareto front: for an exponential number of iterations, the population will always miss a constant fraction of the Pareto front. Our experiments confirm the above findings.
Logistic regression is an algorithm widely used for binary classification in various real-world applications such as fraud detection, medical diagnosis, and recommendation systems. However, training a logistic regression model with data from different parties raises privacy concerns. Secure Multi-Party Computation (MPC) is a cryptographic tool that allows multiple parties to train a logistic regression model jointly without compromising privacy. The efficiency of the online training phase becomes crucial when dealing with large-scale data in practice. In this paper, we propose an online efficient protocol for privacy-preserving logistic regression based on Function Secret Sharing (FSS). Our protocols are designed in the two non-colluding servers setting and assume the existence of a third-party dealer who only poses correlated randomness to the computing parties. During the online phase, two servers jointly train a logistic regression model on their private data by utilizing pre-generated correlated randomness. Furthermore, we propose accurate and MPC-friendly alternatives to the sigmoid function and encapsulate the logistic regression training process into a function secret sharing gate. The online communication overhead significantly decreases compared with the traditional secure logistic regression training based on secret sharing. We provide both theoretical and experimental analyses to demonstrate the efficiency and effectiveness of our method.
High assurance of information-flow security (IFS) for concurrent systems is challenging. A promising way for formal verification of concurrent systems is the rely-guarantee method. However, existing compositional reasoning approaches for IFS concentrate on language-based IFS. It is often not applicable for system-level security, such as multicore operating system kernels, in which secrecy of actions should also be considered. On the other hand, existing studies on the rely-guarantee method are basically built on concurrent programming languages, by which semantics of concurrent systems cannot be completely captured in a straightforward way. In order to formally verify state-action based IFS for concurrent systems, we propose a rely-guarantee-based compositional reasoning approach for IFS in this paper. We first design a language by incorporating ``Event'' into concurrent languages and give the IFS semantics of the language. As a primitive element, events offer an extremely neat framework for modeling system and are not necessarily atomic in our language. For compositional reasoning of IFS, we use rely-guarantee specification to define new forms of unwinding conditions (UCs) on events, i.e., event UCs. By a rely-guarantee proof system of the language and the soundness of event UCs, we have that event UCs imply IFS of concurrent systems. In such a way, we relax the atomicity constraint of actions in traditional UCs and provide a compositional reasoning way for IFS in which security proof of systems can be discharged by independent security proof on individual events. Finally, we mechanize the approach in Isabelle/HOL and develop a formal specification and its IFS proof for multicore separation kernels as a study case according to an industrial standard -- ARINC 653.
The communities of blockchains and distributed ledgers have been stirred up by the introduction of zero-knowledge proofs (ZKPs). Originally designed to solve privacy issues, ZKPs have now evolved into an effective remedy for scalability concerns and are applied in Zcash (internet money like Bitcoin). To enable ZKPs, Rank-1 Constraint Systems (R1CS) offer a verifier for bi-linear equations. To accurately and efficiently represent R1CS, several language tools like Circom, Noir, and Snarky have been proposed to automate the compilation of advanced programs into R1CS. However, due to the flexible nature of R1CS representation, there can be significant differences in the compiled R1CS forms generated from circuit language programs with the same underlying semantics. To address this issue, this paper uses a data-flow-based R1CS paradigm algorithm, which produces a standardized format for different R1CS instances with identical semantics. By using the normalized R1CS format circuits, the complexity of circuits' verification can be reduced. In addition, this paper presents an R1CS normalization algorithm benchmark, and our experimental evaluation demonstrates the effectiveness and correctness of our methods.
The cross-modal synthesis between structural magnetic resonance imaging (sMRI) and functional network connectivity (FNC) is a relatively unexplored area in medical imaging, especially with respect to schizophrenia. This study employs conditional Vision Transformer Generative Adversarial Networks (cViT-GANs) to generate FNC data based on sMRI inputs. After training on a comprehensive dataset that included both individuals with schizophrenia and healthy control subjects, our cViT-GAN model effectively synthesized the FNC matrix for each subject, and then formed a group difference FNC matrix, obtaining a Pearson correlation of 0.73 with the actual FNC matrix. In addition, our FNC visualization results demonstrate significant correlations in particular subcortical brain regions, highlighting the model's capability of capturing detailed structural-functional associations. This performance distinguishes our model from conditional CNN-based GAN alternatives such as Pix2Pix. Our research is one of the first attempts to link sMRI and FNC synthesis, setting it apart from other cross-modal studies that concentrate on T1- and T2-weighted MR images or the fusion of MRI and CT scans.
Content Security Policy (CSP) is an effective security mechanism that prevents the exploitation of Cross-Site Scripting (XSS) vulnerabilities on websites by specifying the sources from which their web pages can load resources, such as scripts and styles. CSP nonces enable websites to allow the execution of specific inline scripts and styles without relying on a whitelist. In this study, we measure and analyze the use of CSP nonces in the wild, specifically looking for nonce reuse, short nonces, and invalid nonces. We find that, of the 2271 sites that deploy a nonce-based policy, 598 of them reuse the same nonce value in more than one response, potentially enabling attackers to bypass protection offered by the CSP against XSS attacks. We analyze the causes of the nonce reuses to identify whether they are introduced by the server-side code or if the nonces are being cached by web caches. Moreover, we investigate whether nonces are only reused within the same session or for different sessions, as this impacts the effectiveness of CSP in preventing XSS attacks. Finally, we discuss the possibilities for attackers to bypass the CSP and achieve XSS in different nonce reuse scenarios.
In the presence of right-censored data with covariates, the conditional Kaplan-Meier estimator (also known as the Beran estimator) consistently estimates the conditional survival function of the random follow-up for the event of interest. However, a necessary condition is the unambiguous knowledge of whether each individual is censored or not, which may be incomplete in practice. We therefore propose a study of the Beran estimator when the censoring indicators are generic random variables and discuss necessary conditions for the efficiency of the Beran estimator. From this, we provide a new estimator for the conditional survival function with missing not at random (MNAR) censoring indicators based on a conditional copula model for the missingness mechanism. In addition to the theoretical results, we illustrate how the estimators work for small samples through a simulation study and show their practical applicability by analyzing synthetic and real data.
We propose a novel protocol for computing a circuit which implements the multi-party private set intersection functionality (PSI). Circuit-based approach has advantages over using custom protocols to achieve this task, since many applications of PSI do not require the computation of the intersection itself, but rather specific functional computations over the items in the intersection. Our protocol represents the pioneering circuit-based multi-party PSI protocol, which builds upon and optimizes the two-party SCS \cite{huang2012private} protocol. By using secure computation between two parties, our protocol sidesteps the complexities associated with multi-party interactions and demonstrates good scalability. In order to mitigate the high overhead associated with circuit-based constructions, we have further enhanced our protocol by utilizing simple hashing scheme and permutation-based hash functions. These tricks have enabled us to minimize circuit size by employing bucketing techniques while simultaneously attaining noteworthy reductions in both computation and communication expenses.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.