亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.

相關內容

Large language models (LLMs) have demonstrated their ability to learn in-context, allowing them to perform various tasks based on a few input-output examples. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples. In this paper, we propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. Our framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder based dense retriever. Our experiments on a suite of 30 tasks demonstrate that our framework significantly enhances in-context learning performance. Furthermore, we show the generalization ability of our framework to unseen tasks during training. An in-depth analysis reveals that our model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes.

We propose the In-context Autoencoder (ICAE) for context compression in a large language model (LLM). The ICAE has two modules: a learnable encoder adapted with LoRA from an LLM for compressing a long context into a limited number of memory slots, and a fixed decoder which is the target LLM that can condition on the memory slots for various purposes. We first pretrain the ICAE using both autoencoding and language modeling objectives on massive text data, enabling it to generate memory slots that accurately and comprehensively represent the original context. Then, we fine-tune the pretrained ICAE on a small amount of instruct data to enhance its interaction with various prompts for producing desirable responses. Our experimental results demonstrate that the ICAE learned with our proposed pretraining and fine-tuning paradigm can effectively produce memory slots with $4\times$ context compression, which can be well conditioned on by the target LLM to respond to various prompts. The promising results demonstrate significant implications of the ICAE for its novel approach to the long context problem and its potential to reduce computation and memory overheads for LLM inference in practice, suggesting further research effort in context management for an LLM. Our code and data will be released shortly.

Global contexts in images are quite valuable in image-to-image translation problems. Conventional attention-based and graph-based models capture the global context to a large extent, however, these are computationally expensive. Moreover, the existing approaches are limited to only learning the pairwise semantic relation between any two points on the image. In this paper, we present Latent Graph Attention (LGA) a computationally inexpensive (linear to the number of nodes) and stable, modular framework for incorporating the global context in the existing architectures, especially empowering small-scale architectures to give performance closer to large size architectures, thus making the light-weight architectures more useful for edge devices with lower compute power and lower energy needs. LGA propagates information spatially using a network of locally connected graphs, thereby facilitating to construct a semantically coherent relation between any two spatially distant points that also takes into account the influence of the intermediate pixels. Moreover, the depth of the graph network can be used to adapt the extent of contextual spread to the target dataset, thereby being able to explicitly control the added computational cost. To enhance the learning mechanism of LGA, we also introduce a novel contrastive loss term that helps our LGA module to couple well with the original architecture at the expense of minimal additional computational load. We show that incorporating LGA improves the performance on three challenging applications, namely transparent object segmentation, image restoration for dehazing and optical flow estimation.

Standard recognition approaches are unable to deal with novel categories at test time. Their overconfidence on the known classes makes the predictions unreliable for safety-critical applications such as healthcare or autonomous driving. Out-Of-Distribution (OOD) detection methods provide a solution by identifying semantic novelty. Most of these methods leverage a learning stage on the known data, which means training (or fine-tuning) a model to capture the concept of normality. This process is clearly sensitive to the amount of available samples and might be computationally expensive for on-board systems. A viable alternative is that of evaluating similarities in the embedding space produced by large pre-trained models without any further learning effort. We focus exactly on such a fine-tuning-free OOD detection setting. This works presents an in-depth analysis of the recently introduced relational reasoning pre-training and investigates the properties of the learned embedding, highlighting the existence of a correlation between the inter-class feature distance and the OOD detection accuracy. As the class separation depends on the chosen pre-training objective, we propose an alternative loss function to control the inter-class margin, and we show its advantage with thorough experiments.

Recently, the performance of neural image compression (NIC) has steadily improved thanks to the last line of study, reaching or outperforming state-of-the-art conventional codecs. Despite significant progress, current NIC methods still rely on ConvNet-based entropy coding, limited in modeling long-range dependencies due to their local connectivity and the increasing number of architectural biases and priors, resulting in complex underperforming models with high decoding latency. Motivated by the efficiency investigation of the Tranformer-based transform coding framework, namely SwinT-ChARM, we propose to enhance the latter, as first, with a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT). Through the proposed ICT, we can capture both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents. Further, we leverage a learnable scaling module with a sandwich ConvNeXt-based pre-/post-processor to accurately extract more compact latent codes while reconstructing higher-quality images. Extensive experimental results on benchmark datasets showed that the proposed framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural codec SwinT-ChARM. Moreover, we provide model scaling studies to verify the computational efficiency of our approach and conduct several objective and subjective analyses to bring to the fore the performance gap between the adaptive image compression transformer (AICT) and the neural codec SwinT-ChARM.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

The content based image retrieval aims to find the similar images from a large scale dataset against a query image. Generally, the similarity between the representative features of the query image and dataset images is used to rank the images for retrieval. In early days, various hand designed feature descriptors have been investigated based on the visual cues such as color, texture, shape, etc. that represent the images. However, the deep learning has emerged as a dominating alternative of hand-designed feature engineering from a decade. It learns the features automatically from the data. This paper presents a comprehensive survey of deep learning based developments in the past decade for content based image retrieval. The categorization of existing state-of-the-art methods from different perspectives is also performed for greater understanding of the progress. The taxonomy used in this survey covers different supervision, different networks, different descriptor type and different retrieval type. A performance analysis is also performed using the state-of-the-art methods. The insights are also presented for the benefit of the researchers to observe the progress and to make the best choices. The survey presented in this paper will help in further research progress in image retrieval using deep learning.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Most of the internet today is composed of digital media that includes videos and images. With pixels becoming the currency in which most transactions happen on the internet, it is becoming increasingly important to have a way of browsing through this ocean of information with relative ease. YouTube has 400 hours of video uploaded every minute and many million images are browsed on Instagram, Facebook, etc. Inspired by recent advances in the field of deep learning and success that it has gained on various problems like image captioning and, machine translation , word2vec , skip thoughts, etc, we present DeepSeek a natural language processing based deep learning model that allows users to enter a description of the kind of images that they want to search, and in response the system retrieves all the images that semantically and contextually relate to the query. Two approaches are described in the following sections.

北京阿比特科技有限公司