Although the expenses associated with DNA sequencing have been rapidly decreasing, the current cost stands at roughly \$1.3K/TB, which is dramatically more expensive than reading from existing archival storage solutions today. In this work, we aim to reduce not only the cost but also the latency of DNA storage by studying the DNA coverage depth problem, which aims to reduce the required number of reads to retrieve information from the storage system. Under this framework, our main goal is to understand how to optimally pair an error-correcting code with a given retrieval algorithm to minimize the sequencing coverage depth, while guaranteeing retrieval of the information with high probability. Additionally, we study the DNA coverage depth problem under the random-access setup.
Communication overhead is one of the major challenges in Federated Learning(FL). A few classical schemes assume the server can extract the auxiliary information about training data of the participants from the local models to construct a central dummy dataset. The server uses the dummy dataset to finetune aggregated global model to achieve the target test accuracy in fewer communication rounds. In this paper, we summarize the above solutions into a data-based communication-efficient FL framework. The key of the proposed framework is to design an efficient extraction module(EM) which ensures the dummy dataset has a positive effect on finetuning aggregated global model. Different from the existing methods that use generator to design EM, our proposed method, FedINIBoost borrows the idea of gradient match to construct EM. Specifically, FedINIBoost builds a proxy dataset of the real dataset in two steps for each participant at each communication round. Then the server aggregates all the proxy datasets to form a central dummy dataset, which is used to finetune aggregated global model. Extensive experiments verify the superiority of our method compared with the existing classical method, FedAVG, FedProx, Moon and FedFTG. Moreover, FedINIBoost plays a significant role in finetuning the performance of aggregated global model at the initial stage of FL.
Autonomous racing control is a challenging research problem as vehicles are pushed to their limits of handling to achieve an optimal lap time; therefore, vehicles exhibit highly nonlinear and complex dynamics. Difficult-to-model effects, such as drifting, aerodynamics, chassis weight transfer, and suspension can lead to infeasible and suboptimal trajectories. While offline planning allows optimizing a full reference trajectory for the minimum lap time objective, such modeling discrepancies are particularly detrimental when using offline planning, as planning model errors compound with controller modeling errors. Gaussian Process Regression (GPR) can compensate for modeling errors. However, previous works primarily focus on modeling error in real-time control without consideration for how the model used in offline planning can affect the overall performance. In this work, we propose a double-GPR error compensation algorithm to reduce model uncertainties; specifically, we compensate both the planner's model and controller's model with two respective GPR-based error compensation functions. Furthermore, we design an iterative framework to re-collect error-rich data using the racing control system. We test our method in the high-fidelity racing simulator Gran Turismo Sport (GTS); we find that our iterative, double-GPR compensation functions improve racing performance and iteration stability in comparison to a single compensation function applied merely for real-time control.
Recommendation systems have witnessed significant advancements and have been widely used over the past decades. However, most traditional recommendation methods are task-specific and therefore lack efficient generalization ability. Recently, the emergence of ChatGPT has significantly advanced NLP tasks by enhancing the capabilities of conversational models. Nonetheless, the application of ChatGPT in the recommendation domain has not been thoroughly investigated. In this paper, we employ ChatGPT as a general-purpose recommendation model to explore its potential for transferring extensive linguistic and world knowledge acquired from large-scale corpora to recommendation scenarios. Specifically, we design a set of prompts and evaluate ChatGPT's performance on five recommendation scenarios. Unlike traditional recommendation methods, we do not fine-tune ChatGPT during the entire evaluation process, relying only on the prompts themselves to convert recommendation tasks into natural language tasks. Further, we explore the use of few-shot prompting to inject interaction information that contains user potential interest to help ChatGPT better understand user needs and interests. Comprehensive experimental results on Amazon Beauty dataset show that ChatGPT has achieved promising results in certain tasks and is capable of reaching the baseline level in others. We conduct human evaluations on two explainability-oriented tasks to more accurately evaluate the quality of contents generated by different models. And the human evaluations show ChatGPT can truly understand the provided information and generate clearer and more reasonable results. We hope that our study can inspire researchers to further explore the potential of language models like ChatGPT to improve recommendation performance and contribute to the advancement of the recommendation systems field.
Most link prediction methods return estimates of the connection probability of missing edges in a graph. Such output can be used to rank the missing edges, from most to least likely to be a true edge, but it does not directly provide a classification into true and non-existent. In this work, we consider the problem of identifying a set of true edges with a control of the false discovery rate (FDR). We propose a novel method based on high-level ideas from the literature on conformal inference. The graph structure induces intricate dependence in the data, which we carefully take into account, as this makes the setup different from the usual setup in conformal inference, where exchangeability is assumed. The FDR control is empirically demonstrated for both simulated and real data.
The multiple-choice knapsack problem (MCKP) is a classic NP-hard combinatorial optimization problem. Motivated by several significant practical applications, this work investigates a novel variant of MCKP called data-driven chance-constrained multiple-choice knapsack problem (DDCCMCKP), where the item weight is a random variable with unknown probability distribution. We first present the problem formulation of DDCCMCKP, and then establish two benchmark sets. The first set contains synthetic instances, and the second set is devised to simulate a real-world application scenario of a certain telecommunication company. To solve DDCCMCKP, we propose a data-driven adaptive local search (DDALS) algorithm. The main merit of DDALS lies in evaluating solutions with chance constraints by data-driven methods, under the condition of unknown distributions and only historical sample data being available. The experimental results demonstrate the effectiveness of the proposed algorithm and show that it is superior to other baselines. Additionally, ablation experiments confirm the necessity of each component in the algorithm. Our proposed algorithm can serve as the baseline for future research, and the code and benchmark sets will be open-sourced to further promote research on this challenging problem.
The Levy walk in which the frequency of occurrence of step lengths follows a power-law distribution, can be observed in the migratory behavior of organisms at various levels. Levy walks with power exponents close to 2 are observed, and the reasons are unclear. This study aims to propose a model that universally generates inverse square Levy walks (called Cauchy walks) and to identify the conditions under which Cauchy walks appear. We demonstrate that Cauchy walks emerge universally in goal-oriented tasks. We use the term "goal-oriented" when the goal is clear, but this can be achieved in different ways, which cannot be uniquely determined. We performed a simulation in which an agent observed the data generated from a probability distribution in a two-dimensional space and successively estimated the central coordinates of that probability distribution. The agent has a model of probability distribution as a hypothesis for data-generating distribution and can modify the model such that each time a data point is observed, thereby increasing the estimated probability of occurrence of the observed data. To achieve this, the center coordinates of the model must be moved closer to those of the observed data. However, in the case of a two-dimensional space, arbitrariness arises in the direction of correction of the center; this task is goal oriented. We analyze two cases: a strategy that allocates the amount of modification randomly in the x- and y-directions, and a strategy that determines allocation such that movement is minimized. The results reveal that when a random strategy is used, the Cauchy walk appears. When the minimum strategy is used, the Brownian walk appears. The presence or absence of the constraint of minimizing the amount of movement may be a factor that causes the difference between Brownian and Levy walks.
Compared with traditional half-duplex wireless systems, the application of emerging full-duplex (FD) technology can potentially double the system capacity theoretically. However, conventional techniques for suppressing self-interference (SI) adopted in FD systems require exceedingly high power consumption and expensive hardware. In this paper, we consider employing an intelligent reflecting surface (IRS) in the proximity of an FD base station (BS) to mitigate SI for simultaneously receiving data from uplink users and transmitting information to downlink users. The objective considered is to maximize the weighted sum-rate of the system by jointly optimizing the IRS phase shifts, the BS transmit beamformers, and the transmit power of the uplink users. To visualize the role of the IRS in SI cancellation by isolating other interference, we first study a simple scenario with one downlink user and one uplink user. To address the formulated non-convex problem, a low-complexity algorithm based on successive convex approximation is proposed. For the more general case considering multiple downlink and uplink users, an efficient alternating optimization algorithm based on element-wise optimization is proposed. Numerical results demonstrate that the FD system with the proposed schemes can achieve a larger gain over the half-duplex system, and the IRS is able to achieve a balance between suppressing SI and providing beamforming gain.
This paper is concerned with a finite-horizon inverse control problem, which has the goal of inferring, from observations, the possibly non-convex and non-stationary cost driving the actions of an agent. In this context, we present a result that enables cost estimation by solving an optimization problem that is convex even when the agent cost is not and when the underlying dynamics is nonlinear, non-stationary and stochastic. To obtain this result, we also study a finite-horizon forward control problem that has randomized policies as decision variables. For this problem, we give an explicit expression for the optimal solution. Moreover, we turn our findings into algorithmic procedures and we show the effectiveness of our approach via both in-silico and experimental validations with real hardware. All the experiments confirm the effectiveness of our approach.
Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.