We introduce two synthetic likelihood methods for Simulation-Based Inference (SBI), to conduct either amortized or targeted inference from experimental observations when a high-fidelity simulator is available. Both methods learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator, conditioned on parameters drawn from a proposal distribution. The learned likelihood can then be combined with any prior to obtain a posterior estimate, from which samples can be drawn using MCMC. Our methods uniquely combine a flexible Energy-Based Model and the minimization of a KL loss: this is in contrast to other synthetic likelihood methods, which either rely on normalizing flows, or minimize score-based objectives; choices that come with known pitfalls. Our first method, Amortized Unnormalized Neural Likelihood Estimation (AUNLE), introduces a tilting trick during training that allows to significantly lower the computational cost of inference by enabling the use of efficient MCMC techniques. Our second method, Sequential UNLE (SUNLE), employs a robust doubly intractable approach in order to re-use simulation data and improve posterior accuracy on a specific dataset. We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a neuroscience model of the pyloric network in the crab Cancer Borealis, matching the performance of other synthetic likelihood methods at a fraction of the simulation budget.
Leveraging well-established MCMC strategies, we propose MCMC-interactive variational inference (MIVI) to not only estimate the posterior in a time constrained manner, but also facilitate the design of MCMC transitions. Constructing a variational distribution followed by a short Markov chain that has parameters to learn, MIVI takes advantage of the complementary properties of variational inference and MCMC to encourage mutual improvement. On one hand, with the variational distribution locating high posterior density regions, the Markov chain is optimized within the variational inference framework to efficiently target the posterior despite a small number of transitions. On the other hand, the optimized Markov chain with considerable flexibility guides the variational distribution towards the posterior and alleviates its underestimation of uncertainty. Furthermore, we prove the optimized Markov chain in MIVI admits extrapolation, which means its marginal distribution gets closer to the true posterior as the chain grows. Therefore, the Markov chain can be used separately as an efficient MCMC scheme. Experiments show that MIVI not only accurately and efficiently approximates the posteriors but also facilitates designs of stochastic gradient MCMC and Gibbs sampling transitions.
Scenario-based probabilistic forecasts have become a vital tool to equip decision-makers to address the uncertain nature of renewable energies. To that end, this paper presents a recent promising deep learning generative approach called denoising diffusion probabilistic models. It is a class of latent variable models which have recently demonstrated impressive results in the computer vision community. However, to the best of our knowledge, there has yet to be a demonstration that they can generate high-quality samples of load, PV, or wind power time series, crucial elements to face the new challenges in power systems applications. Thus, we propose the first implementation of this model for energy forecasting using the open data of the Global Energy Forecasting Competition 2014. The results demonstrate this approach is competitive with other state-of-the-art deep learning generative models, including generative adversarial networks, variational autoencoders, and normalizing flows.
Transfer learning aims to improve the performance of a target model by leveraging data from related source populations, which is known to be especially helpful in cases with insufficient target data. In this paper, we study the problem of how to train a high-dimensional ridge regression model using limited target data and existing regression models trained in heterogeneous source populations. We consider a practical setting where only the parameter estimates of the fitted source models are accessible, instead of the individual-level source data. Under the setting with only one source model, we propose a novel flexible angle-based transfer learning (angleTL) method, which leverages the concordance between the source and the target model parameters. We show that angleTL unifies several benchmark methods by construction, including the target-only model trained using target data alone, the source model fitted on source data, and distance-based transfer learning method that incorporates the source parameter estimates and the target data under a distance-based similarity constraint. We also provide algorithms to effectively incorporate multiple source models accounting for the fact that some source models may be more helpful than others. Our high-dimensional asymptotic analysis provides interpretations and insights regarding when a source model can be helpful to the target model, and demonstrates the superiority of angleTL over other benchmark methods. We perform extensive simulation studies to validate our theoretical conclusions and show the feasibility of applying angleTL to transfer existing genetic risk prediction models across multiple biobanks.
Denoising diffusion models have recently marked a milestone in high-quality image generation. One may thus wonder if they are suitable for neural image compression. This paper outlines an end-to-end optimized image compression framework based on a conditional diffusion model, drawing on the transform-coding paradigm. Besides the latent variables inherent to the diffusion process, this paper introduces an additional discrete ``content'' latent variable to condition the denoising process. This variable is equipped with a hierarchical prior for entropy coding. The remaining ``texture'' latent variables characterizing the diffusion process are synthesized (either stochastically or deterministically) at decoding time. We furthermore show that the performance can be tuned toward perceptual metrics of interest. Our extensive experiments involving five datasets and sixteen image quality assessment metrics show that our approach not only compares favorably in rate-perceptual quality but also shows close distortion performance with state-of-the-art models.
Zero-shot quantization is a promising approach for developing lightweight deep neural networks when data is inaccessible owing to various reasons, including cost and issues related to privacy. By utilizing the learned parameters (statistics) of FP32-pre-trained models, zero-shot quantization schemes focus on generating synthetic data by minimizing the distance between the learned parameters ($\mu$ and $\sigma$) and distributions of intermediate activations. Subsequently, they distill knowledge from the pre-trained model (\textit{teacher}) to the quantized model (\textit{student}) such that the quantized model can be optimized with the synthetic dataset. In general, zero-shot quantization comprises two major elements: synthesizing datasets and quantizing models. However, thus far, zero-shot quantization has primarily been discussed in the context of quantization-aware training methods, which require task-specific losses and long-term optimization as much as retraining. We thus introduce a post-training quantization scheme for zero-shot quantization that produces high-quality quantized networks within a few hours on even half an hour. Furthermore, we propose a framework called \genie~that generates data suited for post-training quantization. With the data synthesized by \genie, we can produce high-quality quantized models without real datasets, which is comparable to few-shot quantization. We also propose a post-training quantization algorithm to enhance the performance of quantized models. By combining them, we can bridge the gap between zero-shot and few-shot quantization while significantly improving the quantization performance compared to that of existing approaches. In other words, we can obtain a unique state-of-the-art zero-shot quantization approach.
Deep operator network (DeepONet) has demonstrated great success in various learning tasks, including learning solution operators of partial differential equations. In particular, it provides an efficient approach to predict the evolution equations in a finite time horizon. Nevertheless, the vanilla DeepONet suffers from the issue of stability degradation in the long-time prediction. This paper proposes a {\em transfer-learning} aided DeepONet to enhance the stability. Our idea is to use transfer learning to sequentially update the DeepONets as the surrogates for propagators learned in different time frames. The evolving DeepONets can better track the varying complexities of the evolution equations, while only need to be updated by efficient training of a tiny fraction of the operator networks. Through systematic experiments, we show that the proposed method not only improves the long-time accuracy of DeepONet while maintaining similar computational cost but also substantially reduces the sample size of the training set.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.