Motorcycle accidents are a prevalent problem in Texas, resulting in hundreds of injuries and deaths each year. Motorcycles provide the driver with little physical protection during accidents compared to cars and other vehicles, so when there is a collision involving a motorcycle, the motorcyclist is likely to be injured. While there are numerous reasons for motorcycle accidents, most are caused by negligence and could have been avoided. Because of the increasing popularity of motorcycles and scooter in Texas, coupled with an increase in the number of motorcycle accidents, the Texas Department of Transportation (TxDOT) has amped its efforts to improve motorcycle safety. From the data, it has been visible that teenage drivers are the most vulnerable to motorcycle accidents. In this report, we have tried to find out the probability of young driver and passenger motorcyclist's injury based on different conditions and to predict the rate of changing injury to this group in the upcoming years.
This paper considers the epistemic justification for a simplicity preference in inductive inference that may be obtained from the machine learning framework of statistical learning theory. Uniting elements from both earlier arguments suggesting and rejecting such a justification, the paper spells out a qualified means-ends and model-relative justificatory argument, built on statistical learning theory's central mathematical learning guarantee for the method of empirical risk minimization.
Speech bandwidth extension (BWE) has demonstrated promising performance in enhancing the perceptual speech quality in real communication systems. Most existing BWE researches primarily focus on fixed upsampling ratios, disregarding the fact that the effective bandwidth of captured audio may fluctuate frequently due to various capturing devices and transmission conditions. In this paper, we propose a novel streaming adaptive bandwidth extension solution dubbed BAE-Net, which is suitable to handle the low-resolution speech with unknown and varying effective bandwidth. To address the challenges of recovering both the high-frequency magnitude and phase speech content blindly, we devise a dual-stream architecture that incorporates the magnitude inpainting and phase refinement. For potential applications on edge devices, this paper also introduces BAE-NET-lite, which is a lightweight, streaming and efficient framework. Quantitative results demonstrate the superiority of BAE-Net in terms of both performance and computational efficiency when compared with existing state-of-the-art BWE methods.
The rating of items based on pairwise comparisons has been a topic of statistical investigation for many decades. Numerous approaches have been proposed. One of the best known is the Bradley-Terry model. This paper seeks to assemble and explain a variety of motivations for its use. Some are based on principles or on maximising an objective function; others are derived from well-known statistical models, or stylised game scenarios. They include both examples well-known in the literature as well as what are believed to be novel presentations.
Interactions between genes and environmental factors may play a key role in the etiology of many common disorders. Several regularized generalized linear models (GLMs) have been proposed for hierarchical selection of gene by environment interaction (GEI) effects, where a GEI effect is selected only if the corresponding genetic main effect is also selected in the model. However, none of these methods allow to include random effects to account for population structure, subject relatedness and shared environmental exposure. In this paper, we develop a unified approach based on regularized penalized quasi-likelihood (PQL) estimation to perform hierarchical selection of GEI effects in sparse regularized mixed models. We compare the selection and prediction accuracy of our proposed model with existing methods through simulations under the presence of population structure and shared environmental exposure. We show that for all simulation scenarios, compared to other penalized methods, our proposed method enforced sparsity by controlling the number of false positives in the model while having the best predictive performance. Finally, we apply our method to a real data application using the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study, and found that our method retrieves previously reported significant loci.
Traffic accidents, being a significant contributor to both human casualties and property damage, have long been a focal point of research for many scholars in the field of traffic safety. However, previous studies, whether focusing on static environmental assessments or dynamic driving analyses, as well as pre-accident predictions or post-accident rule analyses, have typically been conducted in isolation. There has been a lack of an effective framework for developing a comprehensive understanding and application of traffic safety. To address this gap, this paper introduces AccidentGPT, a comprehensive accident analysis and prevention multi-modal large model. AccidentGPT establishes a multi-modal information interaction framework grounded in multi-sensor perception, thereby enabling a holistic approach to accident analysis and prevention in the field of traffic safety. Specifically, our capabilities can be categorized as follows: for autonomous driving vehicles, we provide comprehensive environmental perception and understanding to control the vehicle and avoid collisions. For human-driven vehicles, we offer proactive long-range safety warnings and blind-spot alerts while also providing safety driving recommendations and behavioral norms through human-machine dialogue and interaction. Additionally, for traffic police and management agencies, our framework supports intelligent and real-time analysis of traffic safety, encompassing pedestrian, vehicles, roads, and the environment through collaborative perception from multiple vehicles and road testing devices. The system is also capable of providing a thorough analysis of accident causes and liability after vehicle collisions. Our framework stands as the first large model to integrate comprehensive scene understanding into traffic safety studies.
The aim of this article is to investigate the well-posedness, stability and convergence of solutions to the time-dependent Maxwell's equations for electric field in conductive media in continuous and discrete settings. The situation we consider would represent a physical problem where a subdomain is emerged in a homogeneous medium, characterized by constant dielectric permittivity and conductivity functions. It is well known that in these homogeneous regions the solution to the Maxwell's equations also solves the wave equation which makes calculations very efficient. In this way our problem can be considered as a coupling problem for which we derive stability and convergence analysis. A number of numerical examples validate theoretical convergence rates of the proposed stabilized explicit finite element scheme.
Exponential families are statistical models which are the workhorses in statistics, information theory, and machine learning. An exponential family can either be normalized subtractively by its cumulant function or equivalently normalized divisively by its partition function. Both subtractive and divisive normalizers are strictly convex and smooth functions inducing pairs of Bregman and Jensen divergences. It is well-known that skewed Bhattacharryya distances between probability densities of an exponential family amounts to skewed Jensen divergences induced by the cumulant function between their corresponding natural parameters, and in limit cases that the sided Kullback-Leibler divergences amount to reverse-sided Bregman divergences. In this note, we first show that the $\alpha$-divergences between unnormalized densities of an exponential family amounts scaled $\alpha$-skewed Jensen divergences induced by the partition function. We then show how comparative convexity with respect to a pair of quasi-arithmetic means allows to deform convex functions and define dually flat spaces with corresponding divergences when ordinary convexity is preserved.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.