亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The power requirements posed by the fifth-generation and beyond cellular networks are an important constraint in network deployment and require energy-efficient solutions. In this work, we propose a novel user load transfer approach using airborne base stations (BS) mounted on drones for reliable and secure power redistribution across the micro-grid network comprising green small cell BSs. Depending on the user density and the availability of an aerial BS, the energy requirement of a cell with an energy deficit is accommodated by migrating the aerial BS from a high-energy to a low-energy cell. The proposed hybrid drone-based framework integrates long short-term memory with unique cost functions using an evolutionary neural network for drones and BSs and efficiently manages energy and load redistribution. The proposed algorithm reduces power outages at BSs and maintains consistent throughput stability, thereby demonstrating its capability to boost the reliability and robustness of wireless communication systems.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Experimentation in practical, end-to-end (E2E) next-generation networks deployments is becoming increasingly prevalent and significant in the realm of modern networking and wireless communications research. The prevalence of fifth-generation technology (5G) testbeds and the emergence of developing networks systems, for the purposes of research and testing, focus on the capabilities and features of analytics, intelligence, and automated management using novel testbed designs and architectures, ranging from simple simulations and setups to complex networking systems; however, with the ever-demanding application requirements for modern and future networks, 5G-and-beyond (denoted as 5G+) testbed experimentation can be useful in assessing the creation of large-scale network infrastructures that are capable of supporting E2E virtualized mobile network services. To this end, this paper presents a functional, modular E2E 5G+ system, complete with the integration of a Radio Access Network (RAN) and handling the connection of User Equipment (UE) in real-world scenarios. As well, this paper assesses and evaluates the effectiveness of emulating full network functionalities and capabilities, including a complete description of user-plane data, from UE registrations to communications sequences, and leads to the presentation of a future outlook in powering new experimentation for 6G and next-generation networks.

Vehicle trajectory prediction has increasingly relied on data-driven solutions, but their ability to scale to different data domains and the impact of larger dataset sizes on their generalization remain under-explored. While these questions can be studied by employing multiple datasets, it is challenging due to several discrepancies, \textit{e.g.,} in data formats, map resolution, and semantic annotation types. To address these challenges, we introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria, presenting new opportunities for the vehicle trajectory prediction field. In particular, using UniTraj, we conduct extensive experiments and find that model performance significantly drops when transferred to other datasets. However, enlarging data size and diversity can substantially improve performance, leading to a new state-of-the-art result for the nuScenes dataset. We provide insights into dataset characteristics to explain these findings. The code can be found here: \hyperlink{//github.com/vita-epfl/UniTraj}{//github.com/vita-epfl/UniTraj}.

The advent of Transformers has revolutionized computer vision, offering a powerful alternative to convolutional neural networks (CNNs), especially with the local attention mechanism that excels at capturing local structures within the input and achieve state-of-the-art performance. Processing in-memory (PIM) architecture offers extensive parallelism, low data movement costs, and scalable memory bandwidth, making it a promising solution to accelerate Transformer with memory-intensive operations. However, the crucial challenge lies in efficiently deploying the entire model onto a resource-limited PIM system while parallelizing each transformer block with potentially many computational branches based on local attention mechanisms. We present Allspark, which focuses on workload orchestration for visual Transformers on PIM systems, aiming at minimizing inference latency. Firstly, to fully utilize the massive parallelism of PIM, Allspark empolys a finer-grained partitioning scheme for computational branches, and format a systematic layout and interleaved dataflow with maximized data locality and reduced data movement. Secondly, Allspark formulates the scheduling of the complete model on a resource-limited distributed PIM system as an integer linear programming (ILP) problem. Thirdly, as local-global data interactions exhibit complex yet regular dependencies, Allspark provides a greedy-based mapping method to allocate computational branches onto the PIM system and minimize NoC communication costs. Extensive experiments on 3D-stacked DRAM-based PIM systems show that Allspark brings 1.2x-24.0x inference speedup for various visual Transformers over baselines, and that Allspark-enriched PIM system yields average speedups of 2.3x and energy savings of 20x-55x over Nvidia V100 GPU.

Deep clustering, a method for partitioning complex, high-dimensional data using deep neural networks, presents unique evaluation challenges. Traditional clustering validation measures, designed for low-dimensional spaces, are problematic for deep clustering, which involves projecting data into lower-dimensional embeddings before partitioning. Two key issues are identified: 1) the curse of dimensionality when applying these measures to raw data, and 2) the unreliable comparison of clustering results across different embedding spaces stemming from variations in training procedures and parameter settings in different clustering models. This paper addresses these challenges in evaluating clustering quality in deep learning. We present a theoretical framework to highlight ineffectiveness arising from using internal validation measures on raw and embedded data and propose a systematic approach to applying clustering validity indices in deep clustering contexts. Experiments show that this framework aligns better with external validation measures, effectively reducing the misguidance from the improper use of clustering validity indices in deep learning.

Understanding the modus operandi of adversaries aids organizations in employing efficient defensive strategies and sharing intelligence in the community. This knowledge is often present in unstructured natural language text within threat analysis reports. A translation tool is needed to interpret the modus operandi explained in the sentences of the threat report and translate it into a structured format. This research introduces a methodology named TTPXHunter for the automated extraction of threat intelligence in terms of Tactics, Techniques, and Procedures (TTPs) from finished cyber threat reports. It leverages cyber domain-specific state-of-the-art natural language processing (NLP) to augment sentences for minority class TTPs and refine pinpointing the TTPs in threat analysis reports significantly. The knowledge of threat intelligence in terms of TTPs is essential for comprehensively understanding cyber threats and enhancing detection and mitigation strategies. We create two datasets: an augmented sentence-TTP dataset of 39,296 samples and a 149 real-world cyber threat intelligence report-to-TTP dataset. Further, we evaluate TTPXHunter on the augmented sentence dataset and the cyber threat reports. The TTPXHunter achieves the highest performance of 92.42% f1-score on the augmented dataset, and it also outperforms existing state-of-the-art solutions in TTP extraction by achieving an f1-score of 97.09% when evaluated over the report dataset. TTPXHunter significantly improves cybersecurity threat intelligence by offering quick, actionable insights into attacker behaviors. This advancement automates threat intelligence analysis, providing a crucial tool for cybersecurity professionals fighting cyber threats.

Deep neural network (DNN) video analytics is crucial for autonomous systems such as self-driving vehicles, unmanned aerial vehicles (UAVs), and security robots. However, real-world deployment faces challenges due to their limited computational resources and battery power. To tackle these challenges, continuous learning exploits a lightweight "student" model at deployment (inference), leverages a larger "teacher" model for labeling sampled data (labeling), and continuously retrains the student model to adapt to changing scenarios (retraining). This paper highlights the limitations in state-of-the-art continuous learning systems: (1) they focus on computations for retraining, while overlooking the compute needs for inference and labeling, (2) they rely on power-hungry GPUs, unsuitable for battery-operated autonomous systems, and (3) they are located on a remote centralized server, intended for multi-tenant scenarios, again unsuitable for autonomous systems due to privacy, network availability, and latency concerns. We propose a hardware-algorithm co-designed solution for continuous learning, DaCapo, that enables autonomous systems to perform concurrent executions of inference, labeling, and training in a performant and energy-efficient manner. DaCapo comprises (1) a spatially-partitionable and precision-flexible accelerator enabling parallel execution of kernels on sub-accelerators at their respective precisions, and (2) a spatiotemporal resource allocation algorithm that strategically navigates the resource-accuracy tradeoff space, facilitating optimal decisions for resource allocation to achieve maximal accuracy. Our evaluation shows that DaCapo achieves 6.5% and 5.5% higher accuracy than a state-of-the-art GPU-based continuous learning systems, Ekya and EOMU, respectively, while consuming 254x less power.

In evolutionary policy search, neural networks are usually represented using a direct mapping: each gene encodes one network weight. Indirect encoding methods, where each gene can encode for multiple weights, shorten the genome to reduce the dimensions of the search space and better exploit permutations and symmetries. The Geometric Encoding for Neural network Evolution (GENE) introduced an indirect encoding where the weight of a connection is computed as the (pseudo-)distance between the two linked neurons, leading to a genome size growing linearly with the number of genes instead of quadratically in direct encoding. However GENE still relies on hand-crafted distance functions with no prior optimization. Here we show that better performing distance functions can be found for GENE using Cartesian Genetic Programming (CGP) in a meta-evolution approach, hence optimizing the encoding to create a search space that is easier to exploit. We show that GENE with a learned function can outperform both direct encoding and the hand-crafted distances, generalizing on unseen problems, and we study how the encoding impacts neural network properties.

Automatic coding patient behaviors is essential to support decision making for psychotherapists during the motivational interviewing (MI), a collaborative communication intervention approach to address psychiatric issues, such as alcohol and drug addiction. While the behavior coding task has rapidly adapted machine learning to predict patient states during the MI sessions, lacking of domain-specific knowledge and overlooking patient-therapist interactions are major challenges in developing and deploying those models in real practice. To encounter those challenges, we introduce the Chain-of-Interaction (CoI) prompting method aiming to contextualize large language models (LLMs) for psychiatric decision support by the dyadic interactions. The CoI prompting approach systematically breaks down the coding task into three key reasoning steps, extract patient engagement, learn therapist question strategies, and integrates dyadic interactions between patients and therapists. This approach enables large language models to leverage the coding scheme, patient state, and domain knowledge for patient behavioral coding. Experiments on real-world datasets can prove the effectiveness and flexibility of our prompting method with multiple state-of-the-art LLMs over existing prompting baselines. We have conducted extensive ablation analysis and demonstrate the critical role of dyadic interactions in applying LLMs for psychotherapy behavior understanding.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

北京阿比特科技有限公司